Observing the Sun with the Atacama Large Millimeter/submillimeter Array – from continuum to magnetic fields

2019 ◽  
Vol 15 (S354) ◽  
pp. 24-37
Author(s):  
Sven Wedemeyer ◽  
Mikolaj Szydlarski ◽  
Jaime de la Cruz Rodriguez ◽  
Shahin Jafarzadeh

AbstractThe Atacama Large Millimeter/submillimeter Array offers regular observations of our Sun since 2016. After an extended period of further developing and optimizing the post-processing procedures, first scientific results are now produced. While the first observing cycles mostly provided mosaics and time series of continuum brightness temperature maps with a cadence of 1-2s, additional receiver bands and polarization capabilities will be offered in the future. Currently, polarization capabilities are offered for selected receiver bands but not yet for solar observing. An overview of the recent development, first scientific results and potential of solar magnetic field measurements with ALMA will be presented.

2002 ◽  
Vol 12 ◽  
pp. 371-377
Author(s):  
Jingxiu Wang

AbstractThere should be a driving layer on the Sun, in which the interaction between magnetic field and plasma motion would provide enough magnetic energy and necessary topology for the explosion of solar activity in the corona.Although the exact location of the driving layer is not known, phenomenologically, the photosphere is acting, in many aspects, as the driving layer. Vector magnetic field measurements on the photosphere are greatly needed in clarifying the nature of the driving.Two elementary processes, flux emergence and cancellation, andone basic structure, magnetic interface between topology-independent magnetic loops, are key elements in the driving.


Solar Physics ◽  
1969 ◽  
Vol 6 (3) ◽  
pp. 480-481 ◽  
Author(s):  
J. M. Beckers ◽  
J. O. Stenflo

2003 ◽  
Author(s):  
George H. McCabe ◽  
Donald E. Jennings ◽  
Drake Deming ◽  
Pedro Sada ◽  
Thomas Moran

1991 ◽  
Vol 130 ◽  
pp. 440-442
Author(s):  
M.M. Katsova

Several years ago we proposed a method for the analysis of X-ray observations of late-type stars. It allowed the determination in a uniform manner of coronal base electron densities for more than 40 late-type stars, in terms of a one-temperature consideration of homogeneous spherically symmetric coronae (Katsova et al., 1987). Fig. 1 shows the results as a function of spectral type. Comparison of our results with values for different kinds of solar regions shows that physical characteristics of F and G star coronae correspond to densities less than those in active regions on the Sun. Values for the active K-M0 stars are comparable with those of dense steady condensations found directly above large sunspots.On this basis, activity can be explained as an increase in that part of the stellar surface that is occupied by strong local magnetic fields. This is illustrated in the table where we compare magnetic field measurements by Saar and Linsky (1988) with our calculations.


2020 ◽  
Author(s):  
Yuanyong Deng

<p>Solar magnetic field is a key paramters to understand the solar activity and its influence to the interplanetary space in the solar system. The solar magnetic field measurement is always an enormous challenge to the solar community. We firstly overview the history of solar magnetic field measurement since last early century and analyze the difficulty and progress of pratical methods. Then we introduce an infrared system for the accurate measurement of solar magnetic field (AIMS) and its current progress, which is supported by National Natural Science Foundation of China and also the current ongoing space based projects (ASO-S/FMG) to measure the solar magnetic field in China.</p>


2019 ◽  
Vol 628 ◽  
pp. A103 ◽  
Author(s):  
Alexei A. Pevtsov ◽  
Kseniya A. Tlatova ◽  
Alexander A. Pevtsov ◽  
Elina Heikkinen ◽  
Ilpo Virtanen ◽  
...  

Context. Systematic observations of magnetic field strength and polarity in sunspots began at Mount Wilson Observatory (MWO), USA in early 1917. Except for a few brief interruptions, this historical dataset has continued until the present. Aims. Sunspot field strength and polarity observations are critical in our project of reconstructing the solar magnetic field over the last hundred years. We provide a detailed description of the newly digitized dataset of drawings of sunspot magnetic field observations. Methods. The digitization of MWO drawings is based on a software package that we developed. It includes a semiautomatic selection of solar limbs and other features of the drawing, and a manual entry of the time of observations, measured field strength, and other notes handwritten on each drawing. The data are preserved in an MySQL database. Results. We provide a brief history of the project and describe the results from digitizing this historical dataset. We also provide a summary of the final dataset and describe its known limitations. Finally, we compare the sunspot magnetic field measurements with those from other instruments, and demonstrate that, if needed, the dataset could be continued using modern observations such as, for example, the Vector Stokes Magnetograph on the Synoptic Optical Long-term Investigations of the Sun platform.


Sign in / Sign up

Export Citation Format

Share Document