Beam-steering in a three-element circular antenna-array

Author(s):  
Rachit Garg ◽  
Gaurav Mishra ◽  
Neetesh Purohit ◽  
Vishal Kesari

A simple and volume efficient circular antenna-array design with a low profile programmable beam rotation mechanism was presented. The proper selections of the rotation vector and the excitation coefficients of rectangular array-elements were made for rotation of the beam. The proposed rotation mechanism was capable to rotate the radiation pattern at any desired speed and to transmit in any desired direction, and the design included the ease of construction. Although simulating the radiation pattern using FEKO EM simulator, two basic functions, the power splitter and the introduction of phase difference, were included in feed network of microstrip circuit to divide the power and then individually feeding the each patch after introducing the desired phase difference.

Author(s):  
Zhao Yang ◽  
Wenxian Zheng ◽  
Daniele Inserra ◽  
Jian Li ◽  
Yongjun Huang ◽  
...  

Author(s):  
Yelena A. Litinskaya ◽  
Stanislav V. Polenga ◽  
Yury P. Salomatov ◽  
Anastasia A. Baskova

2019 ◽  
Vol 14 (07) ◽  
pp. P07005-P07005 ◽  
Author(s):  
Z. Mousavi ◽  
P. Rezaei ◽  
M. Borhani Kakhki ◽  
T.A. Denidni

2015 ◽  
Vol 63 (1) ◽  
pp. 419-423 ◽  
Author(s):  
Guan-Long Huang ◽  
Shi-Gang Zhou ◽  
Tan-Huat Chio ◽  
Hon-Tat Hui ◽  
Tat-Soon Yeo

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Changjiang Deng ◽  
Wenhua Chen ◽  
Zhijun Zhang ◽  
Yue Li ◽  
Zhenghe Feng

This paper gives a feasible and simple solution of generating OAM-carrying radio beams. Eight Vivaldi antenna elements connect sequentially and fold into a hollow cylinder. The circular Vivaldi antenna array is fed with unit amplitude but with a successive phase difference from element to element. By changing the phase difference at the steps of 0, ±45°, ±90°, ±135°, and 180°, the OAM radio beam can be generated with mode numbers 0, ±1, ±2, ±3, and 4. Simulations show that the OAM states of ±2 and ±3 are the same as the traditional states, while the OAM states of 0, ±1, and 4 differ at the boresight. This phenomenon can be explained by the radiation pattern difference between Vivaldi antenna and tripole antenna. A solution of distinguishing OAM states is also proposed. The mode number of OAM can be distinguished with only 2 receivers.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Md. Mazidul Islam ◽  
Mikko Leino ◽  
Rasmus Luomaniemi ◽  
Jinsong Song ◽  
Risto Valkonen ◽  
...  

This paper presents a new implementation of the beam-steerable two-dimensional phased antenna array for the forthcoming 5G networks. The antenna enables easy integration of phase shifters and other active electronics on a single PCB, low-loss feed network, low profile, and beam steering in both azimuth and elevation plane. In addition, the antenna is scalable in the number of elements and it can be made compatible with low-cost mass production in plastic injection molding with a metal coating. The antenna consists of a rectangular waveguide feed network, waveguide-to-PCB transitions, phase shifters on a PCB, and horn antenna radiating elements. The parts have been first designed and simulated individually and the operation of the whole structure is then verified by electromagnetic simulations. The phase shifter used in this work is a meandered microstrip line section, but the structure also enables the implementation of active phase shifters. A four-by-four antenna array prototype was manufactured. The beam-steering properties of the phased antenna array have been tested with radiation pattern measurements at 72.5 GHz, and the measured gains are compared with the simulated ones. The measured gains are 15.2 and 11.2 dBi for the boresight beam, and the beam was steered to 40°.


Sign in / Sign up

Export Citation Format

Share Document