A multilayer dual wideband circularly polarized microstrip antenna with DGS for WLAN/Bluetooth/ZigBee/Wi-Max/ IMT band applications

2015 ◽  
Vol 9 (2) ◽  
pp. 317-325 ◽  
Author(s):  
Amanpreet Kaur ◽  
Rajesh Khanna ◽  
Machavaram Kartikeyan

In this paper, a three layered stacked circularly polarized rectangular dual band microstrip antenna with a defected ground structure (DGS) and a feed network with stub (showing dual wideband characteristic) is designed, fabricated, and tested for WLAN, Zig bee, Wi-Max, and IMT band applications. The proposed antenna is fabricated on an FR4 substrate with dielectric constant (εr) of 4.4; tanδ of 0.0024 and a height of 1.57 mm.The antenna has a surface area of 4.8 × 4.1 cm2and a total height of 5.1 mm. The designed antenna covers two wireless bands from 2.39 to 2.64GHz and 3.39–3.76 GHZ with impedance bandwidths (VSWR < 2) of 250 MHz (9% bandwidth centered at 2.515 GHz) and 370 MHz (10% bandwidth centered at 3.57 GHz), respectively. This antenna is capable of covering IEEE 802.11b/g/n standards of WLAN from 2.4 to 2.485 GHz, bluetooth applications from 2.4 to 2.483 GHz, ZigBee applications from 2.4 to 2.485 GHz, IEEE 802.16/ Wi-MaX applications from 3.4 to 3.69 GHz and international mobile telecommunications (IMT) band from 3.4 to 3.6 GHz. As the antenna is circularly polarized, the misalignment of the receiver with transmitter does not affect the performance of the system. The antenna designing was done using CST MWS V'10 and the prototype of the designed antenna was tested for the validation of S11(dB) and gain results against the simulated ones experimentally. The proposed antenna shows a gain of 4.08 dBi at 2.5 GHz and a gain of 5.024 dBi at 3.51 GHz.

In this paper A dual band notched MIMO antennais designed with defected ground structure as ground plane and its characteristics are analyzed. The antenna covers UWB frequency ranging from 3.1-10.6 GHz with single notch band characteristics with maximum gain of 3.7 dB. The antenna provides radiation efficiency of 94% with front to back to ratio of 64%. The simulated studied is carried for many frequency band applications. The designed antenna shows patterns similar to that of a the dipole. The substrate used to design this antenna is FR4 withdimensions of 26mm x40mmx1.6mm and dielectric constant of 4.4.The notch bands are at WLAN and WiMax frequencies.


Sign in / Sign up

Export Citation Format

Share Document