scholarly journals Design of Dual Notch UWBMIMO Antenna with Defected Ground Structure.

In this paper A dual band notched MIMO antennais designed with defected ground structure as ground plane and its characteristics are analyzed. The antenna covers UWB frequency ranging from 3.1-10.6 GHz with single notch band characteristics with maximum gain of 3.7 dB. The antenna provides radiation efficiency of 94% with front to back to ratio of 64%. The simulated studied is carried for many frequency band applications. The designed antenna shows patterns similar to that of a the dipole. The substrate used to design this antenna is FR4 withdimensions of 26mm x40mmx1.6mm and dielectric constant of 4.4.The notch bands are at WLAN and WiMax frequencies.

Author(s):  
Dawit Fitsum ◽  
Dilip Mali ◽  
Mohammed Ismail

<p>This paper presents Dual-Band proximity coupled feed rectangular Microstrip patch antenna with slots on the radiating patch and Defected Ground Structure. Initially a simple proximity coupled feed rectangular Microstrip patch antenna resonating at 2.4 GHz is designed. Etching out a ‘Dumbbell’ shaped defect from the ground plane and ‘T’ shaped slot from the radiating patch of the proximity coupled feed rectangular Microstrip patch antenna, results in a Dual-Band operation, i.e., resonating at 2.4 GHz and 4.5 GHz; with 30.3 % and 18.8% reduction in the overall area of the patch and the ground plane of the reference antenna respectively. The proposed antenna resonates in S-band at frequency of 2.4 GHz with bandwidth of 123.6 MHz and C-band at frequency of 4.5 GHz with bandwidth of 200 MHz, and a very good return loss of -22.1818 dB and -19.0839 dB at resonant frequency of 2.4 GHz and 4.5 GHz respectively is obtained. The proposed antenna is useful for different wireless applications in the S-band and C-band.</p>


2015 ◽  
Vol 9 (2) ◽  
pp. 317-325 ◽  
Author(s):  
Amanpreet Kaur ◽  
Rajesh Khanna ◽  
Machavaram Kartikeyan

In this paper, a three layered stacked circularly polarized rectangular dual band microstrip antenna with a defected ground structure (DGS) and a feed network with stub (showing dual wideband characteristic) is designed, fabricated, and tested for WLAN, Zig bee, Wi-Max, and IMT band applications. The proposed antenna is fabricated on an FR4 substrate with dielectric constant (εr) of 4.4; tanδ of 0.0024 and a height of 1.57 mm.The antenna has a surface area of 4.8 × 4.1 cm2and a total height of 5.1 mm. The designed antenna covers two wireless bands from 2.39 to 2.64GHz and 3.39–3.76 GHZ with impedance bandwidths (VSWR < 2) of 250 MHz (9% bandwidth centered at 2.515 GHz) and 370 MHz (10% bandwidth centered at 3.57 GHz), respectively. This antenna is capable of covering IEEE 802.11b/g/n standards of WLAN from 2.4 to 2.485 GHz, bluetooth applications from 2.4 to 2.483 GHz, ZigBee applications from 2.4 to 2.485 GHz, IEEE 802.16/ Wi-MaX applications from 3.4 to 3.69 GHz and international mobile telecommunications (IMT) band from 3.4 to 3.6 GHz. As the antenna is circularly polarized, the misalignment of the receiver with transmitter does not affect the performance of the system. The antenna designing was done using CST MWS V'10 and the prototype of the designed antenna was tested for the validation of S11(dB) and gain results against the simulated ones experimentally. The proposed antenna shows a gain of 4.08 dBi at 2.5 GHz and a gain of 5.024 dBi at 3.51 GHz.


Author(s):  
P Syam Sundar ◽  
Sarat K Kotamraju ◽  
B T P Madhav ◽  
M Sreehari ◽  
K Raghavendra Rao ◽  
...  

In this article a parasitic strip loaded monopole antennas are designed to notch dual and triple bands. The designed models are constructed on one side of the substrate material and on the other end defected ground structures are implemented. The basic antenna comprises a tuning stub and a ground plane with tapered shape slot as DGS. Another model is constructed with circular monopole radiating element on front side and similar kind of ground structure used in the basic rectangular tuning stub antenna. To create notched bands with tuning stubs, two symmetrical parasitic slits are placed inside the slot of the ground plane. The basic model is of the rectangular stub notching triple band and the circular tuning stub antenna notching dual band. Dual band notched circular tuning stub antenna is prototyped on FR4 substrate and measured results from vector network analyzer are compared with simulation results of HFSS for validation.


2018 ◽  
Vol 7 (2.8) ◽  
pp. 365
Author(s):  
B T P Madhav ◽  
M Purna Kishore

In this article, a simple curved elliptical coplanar wave guide fed antenna is proposed for wideband applications. An elliptical shaped model of multiband antenna is converted as notch band antenna with placement of slots in the radiating structure and by incorporating defected ground structure, bandwidth enhancement isattained in the proposed model. In short, the multiband antennais modelled in to wideband antenna with bandwidth of 17.8 GHz and impedance bandwidth of 67%.By placing defected ground structure adjacent to feed line on the ground plane, additional resonant frequencies are raised and enhancement in the bandwidth is obtained. The measured results are providing excellent correlation with simulation results obtained from HFSS and CST tools.


2015 ◽  
Vol 9 (1) ◽  
pp. 163-170 ◽  
Author(s):  
B. Rama Sanjeeva Reddy ◽  
D. Vakula

In this paper, a compact, dual-band patch antenna is proposed over Minkowski fractal defected ground structure (DGS) for bandwidth enhancement of global positioning system (GPS) applications. The proposed design combines the truncated dual L-shaped slits cut on diagonal corners of radiating patch and fractal defect on the metallic ground plane. This concept shifts the frequencies to lower bands with improvement in antenna radiation properties. By deploying symmetrical and asymmetrical boundaries to the structure for the fractal DGS on metallic ground plane, improvement in bandwidth and gain are obtained. Compact antenna size is achieved for dual-band GPS frequencies of L1 (1.575 GHz) and L2 (1.227 GHz). The measured results for antenna prototype are (1.2–1.245 GHz): L2 band and (1.51–1.59 GHz): L1 band for 10 dB return loss bandwidth with better pattern radiation. Gain value with and without DGS is observed for compact antenna overall volume of 0.32λ0 × 0.32λ0 × 0.024λ0.


2018 ◽  
Vol 7 (3.1) ◽  
pp. 17
Author(s):  
S Leo Pauline ◽  
T R Ganesh Babu

This paper explore about   the micro strip patch antenna design with a defected ground structure (DGS) for dual band operation. The intend of this paper is to design an micro strip antenna, under the frequency at 2.4 GHz and 5.2 GHz that can be utilized for BLUETOOTH and WLAN applications. The feeding technique used here is coaxial feed technique. The above said double band property can be established by etching U-slot in the ground plane. Being periodic structure slot is selected and it is imposed on ground plane. The periodic structures naturally modify the method of propagation of the electromagnetic signal passing on to the antenna. Essentially its core is to vary the parasitic capacitance and inductance of the material through which the substrate is made. This may moreover leads to the reduction in size and progress the performance of the antenna. Micro strip patch antennae are favored due to the fact that these are small in size, inexpensive, consume low power and easy to fabricate and also be designed to meet wide band application requirements.  


2015 ◽  
Vol 8 (8) ◽  
pp. 1197-1206 ◽  
Author(s):  
Seyed Saeed Mirmosaei ◽  
Seyed Ebrahim Afjei ◽  
Esfandiar Mehrshahi ◽  
Mohammad M. Fakharian

In this paper, an ultra-wideband (UWB) planar monopole antenna with impedance bandwidth from 2.83 to 11.56 GHz and dual band-notched characteristics is presented. The antenna consists of a small rectangular ground plane, a bat-shaped radiating patch, anda 50-Ω microstrip line. The notched bands are realized by introducing two different types of structures. The half-wavelength spiral-slots are etched on the radiating patch to obtain a notched band in 5.15 5.925 GHz for WLAN, HIPERLAN, and DSRC systems. Based on the single band-notched UWB antenna, the second notched band is realized by etching a folded stepped impedance resonator as defected ground structure on the ground plane for WiMAX and C-band communication systems. The notched frequencies can be adjusted by altering the length of resonant cells. Surface current distributions and equivalent circuit are used to illustrate the notched mechanism. The performance of this antenna both by simulation and by experiment indicates that the proposed antenna is suitable and a good candidate for UWB applications.


Author(s):  
P Syam Sundar ◽  
Sarat K Kotamraju ◽  
B T P Madhav ◽  
M Sreehari ◽  
K Raghavendra Rao ◽  
...  

In this article a parasitic strip loaded monopole antennas are designed to notch dual and triple bands. The designed models are constructed on one side of the substrate material and on the other end defected ground structures are implemented. The basic antenna comprises a tuning stub and a ground plane with tapered shape slot as DGS. Another model is constructed with circular monopole radiating element on front side and similar kind of ground structure used in the basic rectangular tuning stub antenna. To create notched bands with tuning stubs, two symmetrical parasitic slits are placed inside the slot of the ground plane. The basic model is of the rectangular stub notching triple band and the circular tuning stub antenna notching dual band. Dual band notched circular tuning stub antenna is prototyped on FR4 substrate and measured results from vector network analyzer are compared with simulation results of HFSS for validation.


2018 ◽  
Vol 7 (3) ◽  
pp. 56-63 ◽  
Author(s):  
A. Jaiswal ◽  
R. K. Sarin ◽  
B. Raj ◽  
S. Sukhija

In this paper, a novel circular slotted rectangular patch antenna with three triangle shape Defected Ground Structure (DGS) has been proposed. Radiating patch is made by cutting circular slots of radius 3 mm from the three sides and center of the conventional rectangular patch structure and three triangle shape defects are presented on the ground layer. The size of the proposed antenna is 38 X 25 mm2. Optimization is performed and simulation results have been obtained using Empire XCcel 5.51 software. Thus, a miniaturized antenna is designed which has three impedance bandwidths of 0.957 GHz,  0.779 GHz, 0.665 GHz with resonant frequencies at 3.33 GHz, 6.97 GHz and 8.59 GHz and the corresponding return loss at the three resonant frequencies are -40 dB, -43 dB and -38.71 dB respectively. A prototype is also fabricated and tested. Fine agreement between the measured and simulated results has been obtained. It has been observed that introducing three triangle shape defects on the ground plane results in increased bandwidth, less return loss, good radiation pattern and better impedance matching over the required operating bands which can be used for wireless applications and future 5G applications.


Sign in / Sign up

Export Citation Format

Share Document