scholarly journals Cretaceous vegetational change: a biomal perspective

1992 ◽  
Vol 6 ◽  
pp. 295-295
Author(s):  
Garland R. Upchurch

The Cretaceous rise of flowering plants marked an important transition in the modernization of terrestrial ecosystems. Well documented is the diversification of angiosperm pollen during the mid-Cretaceous and the migration of angiosperms from low latitudes to middle and high latitudes during the Barremian to Cenomanian. Global compilations of “species” diversity indicate a rapid rise in angiosperm diversity during the Albian to Cenomanian. This rise parallels a decline in the species diversity of archaic pteridophytes and the gymnosperm orders Cycadales, Bennettitales, Ginkgoales, Czekanowskiales, and Caytoniales. Late Cretaceous floras show more gradual trends in species diversity than mid-Cretaceous floras.Megafloral reconstructions of vegetation and climate for North America and other continents indicate warm temperatures in coastal regions of middle to high latitudes. Cretaceous biomes, however, often cannot be compared closely with Recent biomes. During much of the Cretaceous, conifers and other gymnosperms shared dominance with angiosperms in tropical and subtropical vegetation, unlike the Recent. During the Late Cretaceous, tropical rainforest was areally restricted. The few known leaf megafloras from equatorial regions indicate subhumid, rather than rainforest, conditions. Desert and semi-desert were widespread at lower latitudes and are documented by the occurrence of evaporite minerals in China, Africa, Spain, Mexico, and South America. Mid-latitude vegetation consisted of open-canopy broadleaved and coniferous evergreen woodlands that existed under subhumid conditions and low seasonality. High-latitude vegetation of the Northern Hemisphere consisted of coniferous and broadleaved deciduous forest, rather than boreal forest and tundra. High-latitude vegetation from coastal regions of the Southern Hemisphere consisted of evergreen conifers and angiosperms. Rainforest conditions appear to have been largely restricted to polar latitudes.Data on relative abundance, though often incomplete, indicate that angiosperms became ecologically important in tropical to warm subtropical broadleaved evergreen forests and woodlands by the Cenomanian. However, their rise to dominance took longer in other biomes. Conifers formed an important component of many Late Cretaceous biomes, and the persistence of archaic gymnosperms was strongly influenced by climate. Deciduous Ginkgoales, Czekanowskiales, Bennettitales, and Caytoniales are rare to absent in Late Cretaceous megafloras from warm subtropical to tropical climates, but they persist in megafloras from cooler climates. Archaic conifers such as Frenelopsis occur in megafloras representing low-latitude desert and semi-desert, but they are generally absent in more humid assemblages. Within mid-latitude broadleaved and coniferous evergreen woodland from North America, conifers show evidence for co-dominance with angiosperms into the early Maastrichtian. However, this co-dominance appears to have ended by latest Maastrichtian, which implies that vegetational reorganization occurred during the last few million years of the Cretaceous in North America.

2005 ◽  
Vol 42 (12) ◽  
pp. 2073-2080 ◽  
Author(s):  
Donald B Brinkman ◽  
John A Tarduno

Three turtles are present in a Turonian–Coniacian age high-latitude vertebrate assemblage from Axel Heiberg Island: Borealochelys axelheibergensis gen. et sp. nov., a generically indeterminate eucryptodire, and a trionychid. The assemblage differs from most Late Cretaceous turtle assemblages from North America in that members of the Paracryptodira are absent. The absence of this group is interpreted as a result of latitudinal differentiation of turtle assemblages in North America during the Late Cretaceous. The level of diversity of turtles in the Axel Heiberg assemblage is comparable to that of mid-latitude assemblages associated with a mean annual paleotemperature of 14 °C, adding to the evidence for high mean annual temperatures at high latitudes during Turonian–Coniacian times.


2018 ◽  
Author(s):  
S. Augusta Maccracken ◽  
◽  
Ian M. Miller ◽  
Conrad C. Labandeira

Vegetatio ◽  
1989 ◽  
Vol 80 (2) ◽  
pp. 167-181 ◽  
Author(s):  
Carl D. Monk ◽  
Donald W. Imm ◽  
Robert L. Potter ◽  
Geoffrey G. Parker

1903 ◽  
Vol 35 (11) ◽  
pp. 295-302
Author(s):  
E. M. Walker

Podisma (Latr.) is a particularly interesting genus of Melanopli, since it is the only one of that immense group that occurs in the Old World, where, indeed, it is represented by considerably more described species than it is in North America. It is also of interest from its distinctly boreal and alpine distribution, being almost peculiar to high latitudes or altitudes. It is a circumpolar genus, inhabiting the mountains and boreal parts of Europe, Asia and North America, a larger number of species having been described from Europe than elsewhere.


2014 ◽  
Vol 51 (7) ◽  
pp. 677-681 ◽  
Author(s):  
Matthew J. Vavrek ◽  
Alison M. Murray ◽  
Phil R. Bell

A recent survey of the middle Cenomanian Dunvegan Formation along the Peace River, Alberta, has yielded a partial skull of a large acipenseriform fish. The fossil was from an animal approximately 5 m in length, based on comparisons with living relatives. Though incomplete, this represents an important record of mid-Cretaceous fish from northern North America, as formations of this age are virtually unexplored in northern regions. This fossil is the oldest acipenserid from North America, and one of the most northerly known.


2021 ◽  
Author(s):  
Joanna Bullard

<div> <p>The world’s largest contemporary dust sources are in low-lying, hot, arid regions, however the processes of dust production and emission also operate in cold climate regions at high latitudes and altitudes.  This lecture focuses on contemporary dust emissions originating from the high latitudes (≥50°N and ≥40°S) and explores three themes before setting out an integrated agenda for future research.  The first theme considers how much dust originates from the high latitudes and methods for determining this.  Estimates from field studies, remote sensing and modelling all suggest around 5% of contemporary global dust emissions originate in the high latitudes, a similar proportion to that from the USA (excluding Alaska) or Australia.  This estimate is a proportion of a highly uncertain figure as quantification of dust emissions from Eurasian high latitudes is limited, and the contribution of local and regional emissions (from any latitude) to the global total is thought to be considerably under-estimated.  Emissions are particularly likely to be under-estimated where dust sources are topographically constrained, and where cold climates reduce vertical mixing of dust plumes restricting the altitudes to which the dust can rise, because both these characteristics present particular challenges for modelling and remote sensing approaches. The second theme considers the drivers of contemporary high latitude dust emissions that reflect complex interactions among sediment supply, sediment availability and transport capacity across different geomorphic sub-systems.  These interactions determine the magnitude, frequency and timing of dust emissions at a range of time scales (diurnal, seasonal, decadal) but both the drivers and response can be nonlinear and hard to predict.  The third and final theme explores the importance of high latitude dust cycling for facilitating cross-boundary material fluxes and its impact in the atmosphere, cryosphere, and terrestrial and marine ecosystems.  This is influenced not only by the quantity and timing of dust emissions but also by dust properties such as particle-size and geochemistry.  Landscape sensitivity, spatial environmental transitions and temporal environmental change are highlighted for their importance in determining how the interactions among drivers and cycles are likely to change in response to future environmental change.</p> </div>


Palynology ◽  
2018 ◽  
Vol 43 (4) ◽  
pp. 608-620 ◽  
Author(s):  
Sophie Warny ◽  
David M. Jarzen ◽  
Shannon J. Haynes ◽  
Kenneth G. MacLeod ◽  
Brian T. Huber

2004 ◽  
Vol 84 (4) ◽  
pp. 1221-1233 ◽  
Author(s):  
Jerry G. Chmielewski ◽  
John C. Semple

Solidago nemoralis, the gray goldenrod, is a polycarpic hemicryptophyte that reproduces vegetatively from branched caudices. This native North American species is morphologically variable throughout its range, and includes an eastern (ssp. nemoralis) and western (ssp. decemflora) race. The eastern subspecies occurs throughout the eastern deciduous forest region of North America and is commonly diploid, though tetraploids do occur throughout. The western race typically occurs on the prairies and is strictly tetraploid. The species occupies riparian habitats, rock outcrops and open fields and roadsides and grows best in well-drained sandy soils in full sunlight. Although the species is weedy in both Canada and the United States it is not noxious. Key words: Solidago nemoralis, gray goldenrod, verge d'or des bois, Asteraceae, Compositae


Sign in / Sign up

Export Citation Format

Share Document