High Latitude Dust: contemporary emissions and geomorphic interactions

Author(s):  
Joanna Bullard

<div> <p>The world’s largest contemporary dust sources are in low-lying, hot, arid regions, however the processes of dust production and emission also operate in cold climate regions at high latitudes and altitudes.  This lecture focuses on contemporary dust emissions originating from the high latitudes (≥50°N and ≥40°S) and explores three themes before setting out an integrated agenda for future research.  The first theme considers how much dust originates from the high latitudes and methods for determining this.  Estimates from field studies, remote sensing and modelling all suggest around 5% of contemporary global dust emissions originate in the high latitudes, a similar proportion to that from the USA (excluding Alaska) or Australia.  This estimate is a proportion of a highly uncertain figure as quantification of dust emissions from Eurasian high latitudes is limited, and the contribution of local and regional emissions (from any latitude) to the global total is thought to be considerably under-estimated.  Emissions are particularly likely to be under-estimated where dust sources are topographically constrained, and where cold climates reduce vertical mixing of dust plumes restricting the altitudes to which the dust can rise, because both these characteristics present particular challenges for modelling and remote sensing approaches. The second theme considers the drivers of contemporary high latitude dust emissions that reflect complex interactions among sediment supply, sediment availability and transport capacity across different geomorphic sub-systems.  These interactions determine the magnitude, frequency and timing of dust emissions at a range of time scales (diurnal, seasonal, decadal) but both the drivers and response can be nonlinear and hard to predict.  The third and final theme explores the importance of high latitude dust cycling for facilitating cross-boundary material fluxes and its impact in the atmosphere, cryosphere, and terrestrial and marine ecosystems.  This is influenced not only by the quantity and timing of dust emissions but also by dust properties such as particle-size and geochemistry.  Landscape sensitivity, spatial environmental transitions and temporal environmental change are highlighted for their importance in determining how the interactions among drivers and cycles are likely to change in response to future environmental change.</p> </div>

2020 ◽  
Vol 6 (26) ◽  
pp. eaba8137 ◽  
Author(s):  
A. Sanchez-Marroquin ◽  
O. Arnalds ◽  
K. J. Baustian-Dorsi ◽  
J. Browse ◽  
P. Dagsson-Waldhauserova ◽  
...  

Ice-nucleating particles (INPs) have the potential to remove much of the liquid water in climatically important mid- to high-latitude shallow supercooled clouds, markedly reducing their albedo. The INP sources at these latitudes are very poorly defined, but it is known that there are substantial dust sources across the high latitudes, such as Iceland. Here, we show that Icelandic dust emissions are sporadically an important source of INPs at mid to high latitudes by combining ice-nucleating active site density measurements of aircraft-collected Icelandic dust samples with a global aerosol model. Because Iceland is only one of many high-latitude dust sources, we anticipate that the combined effect of all these sources may strongly contribute to the INP population in the mid- and high-latitude northern hemisphere. This is important because these emissions are directly relevant for the cloud-phase climate feedback and because high-latitude dust emissions are expected to increase in a warmer climate.


2021 ◽  
Author(s):  
Jamie Banks ◽  
Bernd Heinold ◽  
Kerstin Schepanski

<p>The 'Aralkum' desert (the former Aral Sea) in Central Asia is a comparatively new desert that has formed over the past several decades due to water mismanagement associated with the inflowing Amu Darya and Syr Darya rivers, and is now a known source of dust aerosol in the region. It is known that recently dry lakebeds can be efficient dust sources, due to the availability of readily erodible alluvial sediments. As a dry lakebed with a new area of over 60,000 km<sup>2</sup> exposed to aeolian wind erosion the Aralkum has become a significant driver of dust storms in the region. Other such lakebed dust sources in the Central Asian region include the Sistan Basin on the border between Afghanistan and Iran, and Lake Urmia in Iran. However due to a paucity of measurement sites it is difficult to quantify the behaviour and consequences of dust activity in the region.</p><p>Using the dust transport model COSMO-MUSCAT we simulate dust emissions over the course of one year from these relatively new dust sources, exploring the resultant dust emission and transport patterns, quantifying the radiative effects of this dust, and assessing the viability of measuring such dust using remote sensing techniques. Making use of the Global Surface Water dataset (produced by the Copernicus Programme) in order to define the surface water coverage in various epochs, we make estimates of dust emissions for the Central Asian and Middle Eastern region under three scenarios: 1) the 'Past', representative of water coverage in the 1980s; 2) the 'Present', representative of water coverage in the 2010s; and 3) the 'Aralkum' scenario, representing only dust emissions from the present-era Aralkum. In the Present scenario we estimate that the Aralkum area (here considered as 43-47°N, 58-62°E) emitted 28 Tg of dust over the course of a year from March 2015 to March 2016, out of 272 Tg produced by the wider Middle Eastern and Central Asian region. However ~66% of these Aralkum emissions occurred when the cloud cover was > 95%, raising questions as to the extent to which dust storm activity from the Aralkum is measurable. Modelling is therefore a particularly useful tool, complementary to remote sensing measurements, to understand dust activity in a region characterised by dramatic human-induced changes to the natural environment.</p>


2021 ◽  
Author(s):  
Outi Meinander ◽  
Pavla Dagsson-Waldhauserova ◽  
Pavel Amosov ◽  
Elena Aseyeva ◽  
Cliff Atkins ◽  
...  

Abstract. Dust particles emitted from high latitudes (≥ 50° N and ≥ 40° S, including Arctic as a subregion ≥ 60° N), have a potentially large local, regional, and global significance to climate and environment as short-lived climate forcers, air pollutants and nutrient sources. To understand the multiple impacts of the High Latitude Dust (HLD) on the Earth systems, it is foremost to identify the geographic locations and characteristics of local dust sources. Here, we identify, describe, and quantify the Source Intensity (SI) values using the Global Sand and Dust Storms Source Base Map (G-SDS-SBM), for sixty-four HLD sources included in our collection in the Northern (Alaska, Canada, Denmark, Greenland, Iceland, Svalbard, Sweden, and Russia) and Southern (Antarctica and Patagonia) high latitudes. Activity from most of these HLD dust sources show seasonal character. The environmental and climatic effects of dust on clouds and climatic feedbacks, atmospheric chemistry, marine environment, and cryosphere-atmosphere feedbacks at high latitudes are discussed, and regional-scale modelling of dust atmospheric transport from potential Arctic dust sources is demonstrated. It is estimated that high latitude land area with higher (SI ≥ 0.5), very high (SI ≥ 0.7) and the highest potential (SI ≥ 0.9) for dust emission cover >1 670 000 km2, >560 000 km2, and >240 000 km2, respectively. In the Arctic HLD region, land area with SI ≥ 0.5 is 5.5 % (1 035 059 km2), area with SI ≥ 0.7 is 2.3 % (440 804 km2), and with SI ≥ 0.9 it is 1.1 % (208 701 km2). Minimum SI values in the north HLD region are about three orders of magnitude smaller, indicating that the dust sources of this region are highly dependable on weather conditions. In the south HLD region, soil surface conditions are favourable for dust emission during the whole year. Climate change can cause decrease of snow cover duration, retrieval of glaciers, permafrost thaw, and increase of drought and heat waves intensity and frequency, which all lead to the increasing frequency of topsoil conditions favourable for dust emission and thereby increasing probability for dust storms. Our study provides a step forward to improve the representation of HLD in models and to monitor, quantify and assess the environmental and climate significance of HLD in the future.


Author(s):  
Machiel Lamers ◽  
Jeroen Nawijn ◽  
Eke Eijgelaar

Over the last decades a substantial and growing societal and academic interest has emerged for the development of sustainable tourism. Scholars have highlighted the contribution of tourism to global environmental change and to local, detrimental social and environmental effects as well as to ways in which tourism contributes to nature conservation. Nevertheless the role of tourist consumers in driving sustainable tourism has remained unconvincing and inconsistent. This chapter reviews the constraints and opportunities of political consumerism for sustainable tourism. The discussion covers stronger pockets and a key weak pocket of political consumerism for sustainable tourism and also highlights inconsistencies in sustainable tourism consumption by drawing on a range of social theory arguments and possible solutions. The chapter concludes with an agenda for future research on this topic.


2021 ◽  
Vol 13 (9) ◽  
pp. 1818
Author(s):  
Lisha Ding ◽  
Lei Ma ◽  
Longguo Li ◽  
Chao Liu ◽  
Naiwen Li ◽  
...  

Flash floods are among the most dangerous natural disasters. As climate change and urbanization advance, an increasing number of people are at risk of flash floods. The application of remote sensing and geographic information system (GIS) technologies in the study of flash floods has increased significantly over the last 20 years. In this paper, more than 200 articles published in the last 20 years are summarized and analyzed. First, a visualization analysis of the literature is performed, including a keyword co-occurrence analysis, time zone chart analysis, keyword burst analysis, and literature co-citation analysis. Then, the application of remote sensing and GIS technologies to flash flood disasters is analyzed in terms of aspects such as flash flood forecasting, flash flood disaster impact assessments, flash flood susceptibility analyses, flash flood risk assessments, and the identification of flash flood disaster risk areas. Finally, the current research status is summarized, and the orientation of future research is also discussed.


2020 ◽  
Vol 12 (24) ◽  
pp. 4190
Author(s):  
Siyamthanda Gxokwe ◽  
Timothy Dube ◽  
Dominic Mazvimavi

Wetlands are ranked as very diverse ecosystems, covering about 4–6% of the global land surface. They occupy the transition zones between aquatic and terrestrial environments, and share characteristics of both zones. Wetlands play critical roles in the hydrological cycle, sustaining livelihoods and aquatic life, and biodiversity. Poor management of wetlands results in the loss of critical ecosystems goods and services. Globally, wetlands are degrading at a fast rate due to global environmental change and anthropogenic activities. This requires holistic monitoring, assessment, and management of wetlands to prevent further degradation and losses. Remote-sensing data offer an opportunity to assess changes in the status of wetlands including their spatial coverage. So far, a number of studies have been conducted using remotely sensed data to assess and monitor wetland status in semi-arid and arid regions. A literature search shows a significant increase in the number of papers published during the 2000–2020 period, with most of these studies being in semi-arid regions in Australia and China, and few in the sub-Saharan Africa. This paper reviews progress made in the use of remote sensing in detecting and monitoring of the semi-arid and arid wetlands, and focuses particularly on new insights in detection and monitoring of wetlands using freely available multispectral sensors. The paper firstly describes important characteristics of wetlands in semi-arid and arid regions that require monitoring in order to improve their management. Secondly, the use of freely available multispectral imagery for compiling wetland inventories is reviewed. Thirdly, the challenges of using freely available multispectral imagery in mapping and monitoring wetlands dynamics like inundation, vegetation cover and extent, are examined. Lastly, algorithms for image classification as well as challenges associated with their uses and possible future research are summarised. However, there are concerns regarding whether the spatial and temporal resolutions of some of the remote-sensing data enable accurate monitoring of wetlands of varying sizes. Furthermore, it was noted that there were challenges associated with the both spatial and spectral resolutions of data used when mapping and monitoring wetlands. However, advancements in remote-sensing and data analytics provides new opportunities for further research on wetland monitoring and assessment across various scales.


2021 ◽  
Vol 13 (10) ◽  
pp. 1973
Author(s):  
Sugang Zhou ◽  
Xiaojun Yao ◽  
Dahong Zhang ◽  
Yuan Zhang ◽  
Shiyin Liu ◽  
...  

The advancing of glaciers is a manifestation of dynamic glacial instability. Glaciers in the Tien Shan region, especially in the Central Tien Shan, show instability, and advancing glaciers have been recently detected. In this study, we used Landsat TM/ETM+/OLI remote sensing images to identify glaciers in the Tien Shan region from 1990 to 2019 and found that 48 glaciers advanced. Among them, thirty-four glaciers exhibited terminal advances, and 14 glaciers experienced advances on the tributary or trunk. Ten of the glaciers experiencing terminal advances have been identified as surging glaciers. These 48 glaciers are distributed in the western part of the Halik and Kungey Mountain Ranges in the Central Tien Shan, and Fergana Mountains in the Western Tien Shan, indicating that the Tien Shan is also one of the regions where advancing and surging glaciers are active. From 1990 to 2019, a total of 169 times advances occurred on 34 terminal advancing glaciers in the Tien Shan region; the highest number of advancing and surging of glaciers occurred in July (26 and 14 times, respectively). With reference to the existing literature and the present study, the surge cycle in the Tien Shan is longer than that in other regions at high latitudes in Asia, lasting about 35–60 years. Surging glaciers in the Tien Shan region may be affected by a combination of thermal and hydrological control. An increase in temperature and precipitation drives surging glaciers, but the change mechanism is still difficult to explain based on changes in a single climate variable, such as temperature or precipitation.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3926
Author(s):  
Juping Liu ◽  
Shiju Wang ◽  
Xin Wang ◽  
Mingye Ju ◽  
Dengyin Zhang

Remote sensing (RS) is one of the data collection technologies that help explore more earth surface information. However, RS data captured by satellite are susceptible to particles suspended during the imaging process, especially for data with visible light band. To make up for such deficiency, numerous dehazing work and efforts have been made recently, whose strategy is to directly restore single hazy data without the need for using any extra information. In this paper, we first classify the current available algorithm into three categories, i.e., image enhancement, physical dehazing, and data-driven. The advantages and disadvantages of each type of algorithm are then summarized in detail. Finally, the evaluation indicators used to rank the recovery performance and the application scenario of the RS data haze removal technique are discussed, respectively. In addition, some common deficiencies of current available methods and future research focus are elaborated.


2001 ◽  
Vol 15 (4) ◽  
pp. 903-913 ◽  
Author(s):  
Cynthia Carey ◽  
W. Ronald Heyer ◽  
John Wilkinson ◽  
Ross A. Alford ◽  
J. W. Arntzen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document