Direct Determination of Substituted Azepinoindole Enantiomers in Rat Plasma using Silica Stationary Phase and .beta.-Cyclodextrin as a Mobile Phase Additive

1995 ◽  
Vol 67 (11) ◽  
pp. 1903-1906 ◽  
Author(s):  
R. H. Pullen ◽  
J. J. Brennan ◽  
R. Lammers ◽  
G. Patonay
1996 ◽  
Vol 322 (1-2) ◽  
pp. 43-47 ◽  
Author(s):  
Hu Wenzhi ◽  
Cao Shun-an ◽  
Mamoru Tominaga ◽  
Akira Miyazaki

2004 ◽  
Vol 87 (1) ◽  
pp. 123-128
Author(s):  
Paul Johns ◽  
Rosalyn Phillips ◽  
Lobat Dowlat

Abstract A method was developed for the direct determination of free methionine in soy-based infant formula, with analyte separation and quantitation by reversed-phase liquid chromatography (LC), and UV absorbance at 214 nm, respectively. Sample preparation required only dilution with mobile phase and syringe filtration. Using a 0.02M KH 2 PO 4 mobile phase (pH adjusted to 2.9 with 85% o-phosphoric acid) and 0.7 mL/min flow rate, methionine eluted at approximately 8 min, and total run time was 14 min after column regeneration with acetonitrile–water. System linearity was demonstrated as peak area versus analyte concentration, ranging from 80 to 120% of the formula specification for free methionine (r > 0.999, and all residuals <0.45%). Intermediate precision relative standard deviation values were <1.5% for ready-to-feed and reconstituted powder samples, and recoveries ranged from 98.0 to 103.5% for inter-method comparison with an amino acid analyzer method. The limit of quantitation was 3 mg methionine/L in the “as fed” infant formula. Despite the relatively weak UV absorptivity of methionine, the 214 nm signal was sufficiently intense in the 30–65 mg/L (201–436 μM) range to afford quantitation by peak area proportionation versus a 2-point external standard calibration. This direct UV detection after reversed-phase LC separation provides a simple and accurate method for determining free methionine without derivatization.


2013 ◽  
Vol 96 (6) ◽  
pp. 1315-1324 ◽  
Author(s):  
Mohamed I Walash ◽  
Fathalla Belal ◽  
Nahed El-Enany ◽  
Manal Eid ◽  
Rania N El-Shaheny

Abstract A stability-indicating micellar liquid chromatography (MLC) method was developed and validated for the assay of floctafenine (FLF) in the presence of its degradation product and main metabolite, floctafenic acid (FLA). The analysis was carried out on a CLC Shim-Pack octyl silane (C8) column (150 × 4.6 mm id, 5 μm particle size) using a micellar mobile phase consisting of 0.15 M sodium dodecyl sulfate, 10% n-propanol, and 0.3% triethylamine in 0.02 M orthophosphoric acid (pH = 3). The mobile phase was pumped at a flow rate of 1.0 mL/min with UV detection at 360 nm. The method showed good linearity for FLF and FLA over the concentration ranges of 0.5–25.0 and 0.4–10.0 μg/mL, with LODs of 0.16 and 0.12 μg/mL, respectively. The developed method was successfully applied to the determination of FLF in commercial dispersible tablets, with mean recovery of 98.87 ± 1.37%. Also, the proposed method was specific for the analysis of FLF in presence of the co-formulated drug thiocolchicoside in laboratory-prepared tablets, with mean recovery of 100.50 ± 1.07%. Statistical comparison of the results obtained by the proposed MLC method with those obtained by a comparison method showed good agreement. Moreover, the method was extended to study the degradation behavior of FLF under different International Conference on Harmonization recommended conditions such as alkaline, acidic, oxidative, thermal, and photolytic. The method was further applied for direct determination of FLA as the main metabolite of FLF in human plasma without prior extraction steps, with mean recovery of 110.50 ± 6.5%.


2018 ◽  
Vol 1563 ◽  
pp. 154-161 ◽  
Author(s):  
Shengqian Zhou ◽  
Jing Lin ◽  
Xiaofei Qin ◽  
Ying Chen ◽  
Congrui Deng

2010 ◽  
Vol 93 (3) ◽  
pp. 778-782 ◽  
Author(s):  
Tatána Gondová ◽  
Iveta Petríková

Abstract A new and simple TLC-densitometry method has been developed for the simultaneous separation of the two noradrenergic and specific serotonergic antidepressants mirtazapine and mianserine and validated for their determination in commercially available tablets. The method used TLC plates precoated with silica gel 60F254 as the stationary phase, and the mobile phase consisted of hexaneisopropanol25 ammonia (70 + 25 + 5, v/v/v). Densitometric analysis was carried out in the absorbance mode at 280 nm. The method was validated in accordance with International Conference on Harmonization guidelines in terms of linearity, LOD, LOQ, precision, and accuracy. Calibration curves were linear (R2 > 0.9970) with respect to peak area in the concentration range of 5002500 and 5005000 ng/spot for mirtazapine and mianserine, respectively. The LODs were 20 and 35 ng/spot for mirtazapine and mianserine, respectively. The described method was successfully applied to the determination of mirtazapine and mianserine in their pharmaceutical formulations with recovery ranging from 99.83 to 101.20 of the labeled amount of the compounds. The proposed method can be used in routine QC of these drugs in pharmaceutical formulations.


Sign in / Sign up

Export Citation Format

Share Document