Simultaneous Determination of Floctafenine and its Hydrolytic Degradation Product Floctafenic Acid Using Micellar Liquid Chromatography with Applications to Tablets and Human Plasma

2013 ◽  
Vol 96 (6) ◽  
pp. 1315-1324 ◽  
Author(s):  
Mohamed I Walash ◽  
Fathalla Belal ◽  
Nahed El-Enany ◽  
Manal Eid ◽  
Rania N El-Shaheny

Abstract A stability-indicating micellar liquid chromatography (MLC) method was developed and validated for the assay of floctafenine (FLF) in the presence of its degradation product and main metabolite, floctafenic acid (FLA). The analysis was carried out on a CLC Shim-Pack octyl silane (C8) column (150 × 4.6 mm id, 5 μm particle size) using a micellar mobile phase consisting of 0.15 M sodium dodecyl sulfate, 10% n-propanol, and 0.3% triethylamine in 0.02 M orthophosphoric acid (pH = 3). The mobile phase was pumped at a flow rate of 1.0 mL/min with UV detection at 360 nm. The method showed good linearity for FLF and FLA over the concentration ranges of 0.5–25.0 and 0.4–10.0 μg/mL, with LODs of 0.16 and 0.12 μg/mL, respectively. The developed method was successfully applied to the determination of FLF in commercial dispersible tablets, with mean recovery of 98.87 ± 1.37%. Also, the proposed method was specific for the analysis of FLF in presence of the co-formulated drug thiocolchicoside in laboratory-prepared tablets, with mean recovery of 100.50 ± 1.07%. Statistical comparison of the results obtained by the proposed MLC method with those obtained by a comparison method showed good agreement. Moreover, the method was extended to study the degradation behavior of FLF under different International Conference on Harmonization recommended conditions such as alkaline, acidic, oxidative, thermal, and photolytic. The method was further applied for direct determination of FLA as the main metabolite of FLF in human plasma without prior extraction steps, with mean recovery of 110.50 ± 6.5%.

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Danielle Cristina da Silva ◽  
Cláudio Celestino Oliveira

Method for extraction and determination of amoxicillin, caffeine, ciprofloxacin, norfloxacin, tetracycline, diclofenac, ibuprofen, nimesulide, levonorgestrel, and 17α-ethynylestradiol exploiting micellar liquid chromatography with PDA detector and solid-phase extraction was proposed. The usage of toxic solvents was low; the chromatographic separation of the medicaments was performed using a C18 column and mobile phases A and B containing 15.0% (v/v) ethanol, 3.0% (m/v) sodium dodecyl sulfate (SDS), and 0.02 mol·L−1 phosphate at pHs 7.0 and 8.0, respectively. The method is simple, selective, and fast, and the analytes were separated in 23.0 min. For extraction, 1000 mL of sample containing 2.0% (v/v) ethanol and 0.002 mol·L−1 citric acid at pH 2.50 was loaded through a 1000 mg of C18 cartridge. The analytes were eluted using 3.0 mL of ethanol, which were evaporated and redissolved in 0.5 mL of mobile phase. Concentration factors better than 1200, except amoxicillin (224), were obtained. The analytical curves were linear (R2 better than 0.992); LOD and LOQ n=10 presented values in the range of 0.019–0.247 and 0.058–0.752 mg·L−1, respectively. Recoveries of 99% were obtained, and the results are in agreement with those obtained by the comparative methods.


2014 ◽  
Vol 6 (21) ◽  
pp. 8682-8689 ◽  
Author(s):  
Shereen Shalan ◽  
Jenny Jeehan Nasr ◽  
Fathalla Belal

In this study, a micellar liquid chromatography method is proposed for determination of tizoxanide, the active metabolite of nitazoxanide, using a mobile phase consisting of 0.1 M sodium dodecyl sulphate, 8%n-propanol and 0.3% triethylamine in 0.02 M phosphoric acid.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Irena Malinowska ◽  
Katarzyna E. Stępnik

Micellar liquid chromatography (MLC) with the use of high performance liquid chromatography (HPLC) was used to determine some physicochemical parameters of six biogenic amines: adrenaline, dopamine, octopamine, histamine, 2-phenylethylamine, and tyramine. In this paper, an influence of surfactant’s concentration and pH of the micellar mobile phase on the retention of the tested substances was examined. To determine the influence of surfactant’s concentration on the retention of the tested amines, buffered solutions (at pH 7.4) of ionic surfactant—sodium dodecyl sulfate SDS (at different concentrations) with acetonitrile as an organic modifier (0.8/0.2 v/v) were used as the micellar mobile phases. To determine the influence of pH of the micellar mobile phase on the retention, mobile phases contained buffered solutions (at different pH values) of sodium dodecyl sulfate SDS (at 0.1 M) with acetonitrile (0.8/0.2 v/v). The inverse of value of retention factor () versus concentration of micelles () relationships were examined. Other physicochemical parameters of solutes such as an association constant analyte—micelle ()—and partition coefficient of analyte between stationary phase and water (hydrophobicity descriptor) () were determined by the use of Foley’s equation.


2012 ◽  
Vol 9 (1) ◽  
pp. 443-450 ◽  
Author(s):  
Hoonka Subhra ◽  
Bose Devasish ◽  
Esteve-Romero Josep ◽  
Durgbanshi Abhilasha

A simple chromatographic procedure is reported for the determination of some less prescribed but equally important benzodiazepines (Clotiazepam, clozapine and pinazepam) in serum. The optimization studies have been made in CN, C18and C8columns, using mobile phase containing sodium dodecyl sulphate (SDS) modified with either propanol, butanol or pentanol. The method proposed for the determination of the three benzodiazepines using a mobile phase of 0.13 M SDS, 2.4% pentanol-0.01 M phosphate buffer- 0.1% triethylamine (pH 7) at 25°C and UV detection (240 nm) in a C8column. The serum samples was injected directly, without any pretreatment, eluted in less than 8 min, in accordance to their relative polarities, as indicated by their octanol-water partition coefficients. The limits of detection (ng/mL) was in the 1.6 to 5.6 and 7 to 87 range, for aqueous and serum samples, respectively. Repeatability and intermediate precision was tested for three different concentrations of the drugs, resulting in the 0.1 to 2 range. The results obtained here for the separation of the three benzodiazepines in serum were also counter checked at Department of Bio-analytical Chemistry, Universitat Jaume I, Castelló, Spain.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Hui Yan ◽  
Zhuan-Di Zheng ◽  
Hong-Fei Wu ◽  
Xiao-Chuang Liu ◽  
An Zhou

AbstractTenuifolin was used as a reliable chemical marker for the quality control of Radix Polygalae. The determination of tenuifolin is challenging because the analyte molecule lacks a suitable chromophore. The aim of this study was to establish a microemulsion high-performance liquid chromatography (MELC) method which is robust and sensitive, and can separate and determine tenuifolin in Radix Polygalae using an oil-in-water (O/W) microemulsion mobile phase. The separations were performed on a C18 (4.6 × 250 mm, 5 μm) column at 25 °C using a flow rate of 1.0 mL/min, and an ultraviolet detection wavelength of 210 nm. The microemulsion mobile phase comprised 2.8% (w/v) sodium dodecyl sulfate (SDS), 7.0% (v/v) n-butanol, 0.8% (v/v) n-octane and 0.1% (v/v) aqueous orthophosphate buffer (H3PO4). The linearity analysis of tenuifolin showed a correlation coefficient of 0.9923 in the concentration range of 48.00–960.00 µg/mL. The accuracy of the method based on three concentration levels ranged from 96.23% to 99.28%; the limit of detection (LOD) was 2.34 µg/mL, and the limit of quantification (LOQ) was 6.76 µg/mL. The results of our study indicated that the optimized MELC method was sensitive and robust, and can be widely applied for the separation and determination of tenuifolin in Radix Polygalae.


Sign in / Sign up

Export Citation Format

Share Document