How Many Cocrystals Are We Missing? Assessing Two Crystal Engineering Approaches to Pharmaceutical Cocrystal Screening

Author(s):  
Chiara Cappuccino ◽  
David Cusack ◽  
James Flanagan ◽  
Carl Harrison ◽  
Cillian Holohan ◽  
...  
CrystEngComm ◽  
2018 ◽  
Vol 20 (3) ◽  
pp. 362-369 ◽  
Author(s):  
S. Tanida ◽  
N. Takata ◽  
R. Takano ◽  
A. Sakon ◽  
T. Ueto ◽  
...  

The crystal engineering approach based on isomorphism succeeded in crystallizing a pharmaceutical cocrystal in the early stage.


CrystEngComm ◽  
2020 ◽  
Vol 22 (25) ◽  
pp. 4210-4214
Author(s):  
Rafael Barbas ◽  
Lídia Bofill ◽  
Dafne de Sande ◽  
Mercè Font-Bardia ◽  
Rafel Prohens

A cocrystal screening of solid solutions of three phytosterols (β-sitosterol, campesterol, stigmasterol) reveals that cocrystal solid solutions are enriched with β-sitosterol with respect to stigmasterol, a natural product with cytotoxicity concerns.


Author(s):  
Brigid R. Heywood ◽  
S. Champ

Recent work on the crystallisation of inorganic crystals under compressed monomolecular surfactant films has shown that two dimensional templates can be used to promote the oriented nucleation of solids. When a suitable long alkyl chain surfactant is cast on the crystallisation media a monodispersied population of crystals forms exclusively at the monolayer/solution interface. Each crystal is aligned with a specific crystallographic axis perpendicular to the plane of the monolayer suggesting that nucleation is facilitated by recognition events between the nascent inorganic solid and the organic template.For example, monolayers of the long alkyl chain surfactant, stearic acid will promote the oriented nucleation of the calcium carbonate polymorph, calcite, on the (100) face, whereas compressed monolayers of n-eicosyl sulphate will induce calcite nucleation on the (001) face, (Figure 1 & 2). An extensive program of research has confirmed the general principle that molecular recognition events at the interface (including electrostatic interactions, geometric homology, stereochemical complementarity) can be used to promote the crystal engineering process.


2018 ◽  
Author(s):  
Igor Baburin

The paper calls attention to the most symmetric interpenetration patterns of honeycomb layers. To the best of my knowledge, such patterns remained unknown so far. In my contribution a rigorous derivation of such patterns is given that makes use of a new approach to interpenetrating nets. The results are presented in a broad context of structural chemistry and crystal engineering.


2019 ◽  
Author(s):  
Kazuki Morita ◽  
Ji-Sang Park ◽  
Sunghyun Kim ◽  
Kenji Yasuoka ◽  
Aron Walsh

The Aurivillius phases of complex bismuth oxides have attracted considerable attention due to their lattice polarization (ferroelectricity) and photocatalytic activity. We report a first-principles exploration of Bi<sub>2</sub>WO<sub>6</sub> and the replacement of W<sup>6+</sup> by pentavalent (Nb<sup>5+</sup>, Ta<sup>5+</sup>) and tetravalent (Ti<sup>4+</sup>, Sn<sup>4+</sup>) ions, with charge neutrality maintained by the formation of a mixed-anion oxyhalide sublattice. We find that Bi<sub>2</sub>SnO<sub>4</sub>F<sub>2</sub> is thermodynamically unstable, in contrast to Bi<sub>2</sub>TaO<sub>5</sub>F, Bi<sub>2</sub>NbO<sub>5</sub>F and Bi<sub>2</sub>TiO<sub>4</sub>F<sub>2</sub>. The electric dipoles introduced by chemical substitutions in the parent compound are found to suppress the spontaneous polarization from 61.55 μC/cm<sup>2</sup> to below 15.50 μC/cm<sup>2</sup>. Analysis of the trends in electronic structure, surface structure, and ionization potentials are reported. This family of materials can be further extended with control of layer thicknesses and choice of compensating halide species.<br>


2013 ◽  
Vol 41 (12) ◽  
pp. 1928
Author(s):  
Zong-Liang CHI ◽  
Miao-Miao WANG ◽  
Xiao-Dong CONG ◽  
Shao-Guang LIU ◽  
Bao-Chang CAI

Sign in / Sign up

Export Citation Format

Share Document