Kinetic Model of Steam Gasification of Biomass in a Dual Fluidized Bed Reactor: Comparison with Pilot-Plant Experimental Results

2017 ◽  
Vol 31 (11) ◽  
pp. 12141-12155 ◽  
Author(s):  
Bijan Hejazi ◽  
John R. Grace ◽  
Xiaotao Bi ◽  
Andrés Mahecha-Botero
Author(s):  
Anna Magdalena Mauerhofer ◽  
Stefan Müller ◽  
Florian Benedikt ◽  
Josef Fuchs ◽  
Alexander Bartik ◽  
...  

Abstract A 100 kWth dual fluidized bed steam gasification pilot plant has been developed at TU Wien to convert different types of biogenic fuels into a valuable product gas. In this paper, the conversion of different biogenic fuels in combination with the utilization of CO2 as alternative gasification agent was investigated in the mentioned pilot plant. For this purpose, five experimental campaigns were carried out aiming at the investigation of softwood as reference fuel, and rapeseed cake, bark and lignin as alternative fuels. Pure olivine as well as a mixture (90/10 wt%) of olivine and limestone were used as bed materials. The product gas compositions of the different biogenic fuels changed depending on the elemental composition of the biogenic fuels. Thus, a high amount of carbon in the fuel enhanced CO formation, whereas an increased content of oxygen led to higher CO2 contents. Additionally, the presence of alkali metals in the biomass ash favoured the production of CO. The addition of limestone enhanced the H2 and CO contents via the water gas shift reaction as well as steam and dry reforming reactions, but had no significant effect on tar contents. Overall, this paper presents the feasibility of the dual-fluidized bed gasification process of different biogenic fuels with CO2 as gasification agent.


2017 ◽  
Vol 31 (2) ◽  
pp. 1702-1711 ◽  
Author(s):  
Bijan Hejazi ◽  
John R. Grace ◽  
Xiaotao Bi ◽  
Andrés Mahecha-Botero

Fuel ◽  
2014 ◽  
Vol 117 ◽  
pp. 1256-1266 ◽  
Author(s):  
Bijan Hejazi ◽  
John R. Grace ◽  
Xiaotao Bi ◽  
Andrés Mahecha-Botero

Energy ◽  
2018 ◽  
Vol 164 ◽  
pp. 329-343 ◽  
Author(s):  
F. Benedikt ◽  
J.C. Schmid ◽  
J. Fuchs ◽  
A.M. Mauerhofer ◽  
S. Müller ◽  
...  

2009 ◽  
Vol 13 (1) ◽  
pp. 89-104 ◽  
Author(s):  
Vasilije Manovic ◽  
Edward Anthony

This paper presents research on CO2 capture by lime-based looping cycles. This is a new and promising technology that may help in mitigation of global warming and climate change caused primarily by the use of fossil fuels. The intensity of the anticipated changes urgently requires solutions such as the developing technologies for CO2 capture, especially those based on CaO looping cycles. This technology is at the pilot plant demonstration stage and there are still significant challenges that require solutions. The technology is based on a dual fluidized bed reactor which contains a carbonator - a unit for CO2 capture, and a calciner - a unit for CaO regeneration. The major technology components are well known from other technologies and easily applicable. However, even though CaO is a very good candidate as a solid CO2 carrier, its performance in a practical system still has significant limitations. Thus, research on CaO performance is critical and this paper discusses some of the more important problems and potential solutions that are being examined at CETC-O.


Sign in / Sign up

Export Citation Format

Share Document