Connecting the Oxidative Potential of Secondary Organic Aerosols with Reactive Oxygen Species in Exposed Lung Cells

2019 ◽  
Vol 53 (23) ◽  
pp. 13949-13958 ◽  
Author(s):  
Pratiti Home Chowdhury ◽  
Quanfu He ◽  
Raanan Carmieli ◽  
Chunlin Li ◽  
Yinon Rudich ◽  
...  
2017 ◽  
Vol 200 ◽  
pp. 251-270 ◽  
Author(s):  
Haijie Tong ◽  
Pascale S. J. Lakey ◽  
Andrea M. Arangio ◽  
Joanna Socorro ◽  
Christopher J. Kampf ◽  
...  

Mineral dust and secondary organic aerosols (SOA) account for a major fraction of atmospheric particulate matter, affecting climate, air quality and public health. How mineral dust interacts with SOA to influence cloud chemistry and public health, however, is not well understood. Here, we investigated the formation of reactive oxygen species (ROS), which are key species of atmospheric and physiological chemistry, in aqueous mixtures of SOA and mineral dust by applying electron paramagnetic resonance (EPR) spectrometry in combination with a spin-trapping technique, liquid chromatography-tandem mass spectrometry (LC-MS/MS), and a kinetic model. We found that substantial amounts of ROS including OH, superoxide as well as carbon- and oxygen-centred organic radicals can be formed in aqueous mixtures of isoprene, α-pinene, naphthalene SOA and various kinds of mineral dust (ripidolite, montmorillonite, kaolinite, palygorskite, and Saharan dust). The molar yields of total radicals were ∼0.02–0.5% at 295 K, which showed higher values at 310 K, upon 254 nm UV exposure, and under low pH (<3) conditions. ROS formation can be explained by the decomposition of organic hydroperoxides, which are a prominent fraction of SOA, through interactions with water and Fenton-like reactions with dissolved transition metal ions. Our findings imply that the chemical reactivity and aging of SOA particles can be enhanced upon interaction with mineral dust in deliquesced particles or cloud/fog droplets. SOA decomposition could be comparably important to the classical Fenton reaction of H2O2 with Fe2+ and that SOA can be the main source of OH radicals in aqueous droplets at low concentrations of H2O2 and Fe2+. In the human respiratory tract, the inhalation and deposition of SOA and mineral dust can also lead to the release of ROS, which may contribute to oxidative stress and play an important role in the adverse health effects of atmospheric aerosols in the Anthropocene.


2019 ◽  
Vol 53 (15) ◽  
pp. 8553-8562 ◽  
Author(s):  
Alessandro Manfrin ◽  
Sergey A. Nizkorodov ◽  
Kurtis T. Malecha ◽  
Gordon J. Getzinger ◽  
Kristopher McNeill ◽  
...  

Author(s):  
Haijie Tong ◽  
Pascale S. J. Lakey ◽  
Andrea M. Arangio ◽  
Joanna Socorro ◽  
Fangxia Shen ◽  
...  

1989 ◽  
Vol 66 (3) ◽  
pp. 1321-1327 ◽  
Author(s):  
D. S. Lee ◽  
E. A. McCallum ◽  
D. M. Olson

A differentiation-arrested primary cell culture model was used to examine the role of reactive oxygen species in the control of prostacyclin (PGI2) production in the perinatal rat lung. Coincubation of the lung cells with arachidonic acid (AA) and xanthine (X, 0.25 mM) plus xanthine oxidase (XO, 10 mU/ml) or with AA and glucose (25 mM) plus glucose oxidase (25 mU/ml) augmented the AA-induced PGI2 output. Superoxide dismutase (10 U/ml) did not alter the X + XO effect, whereas catalase (10 U/ml) eliminated both X + XO and glucose plus glucose oxidase effects. H2O2 (1–200 microM) showed a dose-related biphasic augmentation with peak stimulation at 20 microM. Catalase again blocked this effect, but dimethylthiourea, a hydroxyl radical scavenger, did not. A 20-min pretreatment of the cells with X + XO, glucose plus glucose oxidase, or H2O2, however, diminished the capacity of the cells to convert exogenous AA to PGI2. This pretreatment effect was also blocked by catalase. The responses were similar in lung cells obtained from day 20 rat fetuses (term = 22 days) and 1-day-old newborn rats. Lactate dehydrogenase release was not detected during treatment periods but increased significantly after exposure to reactive oxygen species.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document