Root Cause Analysis of Key Process Variable Deviation for Rare Events in the Chemical Process Industry

2020 ◽  
Vol 59 (23) ◽  
pp. 10987-10999 ◽  
Author(s):  
Pallavi Kumari ◽  
Dongheon Lee ◽  
Qingsheng Wang ◽  
M. Nazmul Karim ◽  
Joseph Sang-Il Kwon
2011 ◽  
pp. 78-86
Author(s):  
R. Kilian ◽  
J. Beck ◽  
H. Lang ◽  
V. Schneider ◽  
T. Schönherr ◽  
...  

2012 ◽  
Vol 132 (10) ◽  
pp. 1689-1697
Author(s):  
Yutaka Kudo ◽  
Tomohiro Morimura ◽  
Kiminori Sugauchi ◽  
Tetsuya Masuishi ◽  
Norihisa Komoda

Alloy Digest ◽  
2004 ◽  
Vol 53 (7) ◽  

Abstract ATI 425 was originally developed for hot-rolled armor plate to provide ballistic protection comparable to Ti-6Al-4V and has been evaluated against a variety of projectile threats for use as armor. While processing the alloy for armor plate applications, it was observed that the material exhibited very good hot workability, permitting a more lenient window of processing parameters than necessary for Ti-6Al-4V. Versatility then expanded, and applications now exist in the chemical process industry (CPI) and in the aerospace industry. This datasheet provides information on composition, physical properties, and tensile properties as well as fracture toughness and fatigue. It also includes information on corrosion resistance. Filing Code: TI-133. Producer or source: ATI Wah Chang, Allegheny Technologies. Originally published March 2004, revised July 2004.


Author(s):  
Dan Bodoh ◽  
Kent Erington ◽  
Kris Dickson ◽  
George Lange ◽  
Carey Wu ◽  
...  

Abstract Laser-assisted device alteration (LADA) is an established technique used to identify critical speed paths in integrated circuits. LADA can reveal the physical location of a speed path, but not the timing of the speed path. This paper describes the root cause analysis benefits of 1064nm time resolved LADA (TR-LADA) with a picosecond laser. It shows several examples of how picosecond TR-LADA has complemented the existing fault isolation toolset and has allowed for quicker resolution of design and manufacturing issues. The paper explains how TR-LADA increases the LADA localization resolution by eliminating the well interaction, provides the timing of the event detected by LADA, indicates the propagation direction of the critical signals detected by LADA, allows the analyst to infer the logic values of the critical signals, and separates multiple interactions occurring at the same site for better understanding of the critical signals.


Sign in / Sign up

Export Citation Format

Share Document