oscillatory chemical
Recently Published Documents


TOTAL DOCUMENTS

93
(FIVE YEARS 9)

H-INDEX

18
(FIVE YEARS 1)

2021 ◽  
Vol 9 ◽  
Author(s):  
Marta Dueñas-Díez ◽  
Juan Pérez-Mercader

Computing with molecules is at the center of complex natural phenomena, where the information contained in ordered sequences of molecules is used to implement functionalities of synthesized materials or to interpret the environment, as in Biology. This uses large macromolecules and the hindsight of billions of years of natural evolution. But, can one implement computation with small molecules? If so, at what levels in the hierarchy of computing complexity? We review here recent work in this area establishing that all physically realizable computing automata, from Finite Automata (FA) (such as logic gates) to the Linearly Bound Automaton (LBA, a Turing Machine with a finite tape) can be represented/assembled/built in the laboratory using oscillatory chemical reactions. We examine and discuss in depth the fundamental issues involved in this form of computation exclusively done by molecules. We illustrate their implementation with the example of a programmable finite tape Turing machine which using the Belousov-Zhabotinsky oscillatory chemistry is capable of recognizing words in a Context Sensitive Language and rejecting words outside the language. We offer a new interpretation of the recognition of a sequence of chemicals representing words in the machine's language as an illustration of the “Maximum Entropy Production Principle” and concluding that word recognition by the Belousov-Zhabotinsky Turing machine is equivalent to extremal entropy production by the automaton. We end by offering some suggestions to apply the above to problems in computing, polymerization chemistry, and other fields of science.


2021 ◽  
Vol 29 (1) ◽  
pp. 49-58
Author(s):  
Peter Ružička ◽  
Pavol Myšľan ◽  
Martin Števko ◽  
Sergii Kurylo

Analyzed garnets from the Magnet hill area near Tisovec (Slovak Republic) are part of a Ca-skarn mineral association consisting of diopside, clinochlore and calcite. Compositionally they correspond to Ti-rich andradite (Adr50.9-73.7) with minor grossular (Grs3.8-44.5) and schorlomite (Sch0.5-41.5) components. Garnets contain up to 13 wt. % TiO2 and in all of them YFe3+>YTi ratio prevails. Both sector and oscillatory chemical zoning were observed, which is primarily caused by variable distribution of Ti contents within individual garnet crystals. The three principal zones were distinguished in BSE imaging. The brightest are Ti-enriched zones with Ti content ranging from 0.85 to 0.50 apfu. Titanium gradually decreases in transitional zone (0.17 - 0.40 apfu) and reaches the minimum values in the dark zones (0.01 - 0.13 apfu). In the Ti-enriched zones the content of Si4+ and Al3+ is decreased due to substitution of Ti4+ and Fe3+ and assumed hydrogarnet substitution (SiO4)4- ↔ (O4H4)4-.


2021 ◽  
Vol 29 (2) ◽  
pp. 270-274
Author(s):  
Martin Števko ◽  
Zdeněk Dolníček

The chemical composition of three samples of minerals of the hidalgoite-philipsbornite series from the central part of the Guatomo mine pit was studied in detail by EMPA-WDS. They form yellowish-green, light green to pale blue microcrystalline crusts or hollow pseudomorphs after prismatic hexagonal crystals of mimetite in fractures of strongly altered granite or quartz. All studied samples show relatively strong, irregular to oscillatory chemical zoning in BSE, caused by S versus As substitution on T-site. Most of the zones are corresponding to hidalgoite, with only minor, outer zones represented by S-rich philipsbornite. Besides of dominant contents of Pb, Al, As and S also minor amounts of K (up to 0.11 apfu), Na (up to 0.05 apfu), Cu (up to 0.22 apfu), Fe (up to 0.09 apfu) and P (up to 0.04 apfu) were detected in studied samples.


2020 ◽  
pp. 1-18
Author(s):  
Georgii Gennadyevich Malinetskii ◽  
Alexey Konstantinovich Klochkov

Sign in / Sign up

Export Citation Format

Share Document