Method for Determining the Hydraulic-Retention Time and Operating Conditions of a Circulating-Fluidized-Bed Bioreactor with Composition Disturbances

2019 ◽  
Vol 58 (5) ◽  
pp. 2113-2124
Author(s):  
Junwen Luo ◽  
Wenbin Li ◽  
Yuanyuan Shao ◽  
George Nakhla ◽  
Jesse Zhu
2011 ◽  
Vol 64 (4) ◽  
pp. 967-973
Author(s):  
S. Koyunluoglu-Aynur ◽  
R. Riffat ◽  
S. Murthy

The objective of the present work was to evaluate the effect of hydraulic retention time (HRT) on hydrolysis and acidogenesis for the pretreatment processes: acid phase digestion (APD) and autothermal thermophilic aerobic digestion (ATAD) using blended municipal sludge. The effect of the different pretreatment steps on mesophilic anaerobic digestion (MAD) was evaluated in terms of methane yield, keeping the operating conditions of the MAD the same for all systems. Best operating conditions for both APD and ATAD were observed for 2.5 d HRT with high total volatile fatty acids (tVFA), and the highest methane yield observed for MAD. No significant difference was observed between the two processes in terms of overall volatile solids (VS) reduction with same total HRT. The autothermal process produced heat of 14,300 J/g VS removed from hydrolytic and acetogenic reactions without compromising overall methane yields when the HRT was 2.5 d or lower and the total O2 used was 0.10 m3 O2/g VS added or lower. However, the process needs the input of oxygen and engineering analysis should balance these differences when considering the relative merits of the two pretreatment processes. This is the first study of its kind directly comparing these two viable pretreatment processes with the same sludge.


2009 ◽  
Vol 2009 (15) ◽  
pp. 2402-2407
Author(s):  
Nabin Chowdhury ◽  
George Nakhla ◽  
Jesse Zhu ◽  
Michael Shortt ◽  
Mohammad Islam

Author(s):  
Bruna Souza dos Santos ◽  
Eduardo Eyng ◽  
Paulo Rodrigo Stival Bittencourt ◽  
Laercio Mantovani Frare ◽  
Éder Lisandro de Moraes Flores ◽  
...  

Wastewaters from textile industries are known for their difficulty to treat, several alternative technologies are applied for their treatment. In this context, the study examined a hybrid treatment system, composed of electrocoagulation combined with a natural coagulant (extract of Moringa oleífera lam seeds) to remove reactive dye Blue 5G aqueous solutions. The work evaluated the use of milder operating conditions to improve the efficiency of treatment, with reduced demands for electrical power and coagulant.  The following factors were evaluated: electric current intensity, natural coagulant concentration and hydraulic retention time. A quadratic model was adjusted and validated at a 5% significance level. The overall optimization resulted in conditions of 0.28 A for electrical current intensity, 1000.00 mg L-1 of aqueous extract of Moringa oleífera lam and 5 min for hydraulic retention time. While operating under optimal conditions, the removal of 71.38% of color and 5.22 mg L-1 of iron residual concentration was achieved.


Sign in / Sign up

Export Citation Format

Share Document