scholarly journals 110th Anniversary: Industrial Process Water Treatment and Reuse Enabled by Selective Ion Exchange Materials

2019 ◽  
Vol 58 (32) ◽  
pp. 14873-14879
Author(s):  
Brandon W. Heimer ◽  
Scott M. Paap ◽  
Koroush Sasan ◽  
Patrick V. Brady ◽  
Tina M. Nenoff
Minerals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 655
Author(s):  
İlkay Bengü Can ◽  
Özlem Bıçak ◽  
Seda Özçelik ◽  
Metin Can ◽  
Zafir Ekmekçi

Water chemistry is one of the most important parameters affecting flotation performance. Various types of ions can dissolve and accumulate in process water depending on ore mineralogy, reagent scheme, grinding medium and chemistry of mine site water. Sulfur-based ions (sulfate, thiosulfate, polythionate) are generally observed in flotation of sulfide ores. High concentrations of these ions may reduce efficiency of the flotation process, causing scale problems. Removal of these ions from process water often requires complex water treatment plants with high capital and operating costs. In this study, partial cleaning of water was investigated as an alternative approach for decreasing high sulphate concentrations of 3000–3800 mg/L down to 1000–1500 mg/L, an acceptable concentration for most sulfide ore flotation plants, by using an ion-exchange resin. For this purpose, detailed adsorption tests were performed using a laboratory-scale column system to determine the most suitable type of resin for adsorption of sulfate and thiosalts, kinetics of adsorption and regeneration of the resins. A strong base anion ion exchange resin (Selion SBA2000) was used in the experiments. The findings from the laboratory scale studies were validated in a Cu-Pb-Zn Flotation Plant in an Iberian mine using a larger scale of column set-up. The results showed that 60–70% of sulphates could be successfully removed from process water. Adsorption capacity of the resin was determined as 80.3 mg SO4/g resin. Concentrations of thiosalts and polythionates were also reduced to nearly zero value from 500 mg/L and 1000 mg/L, respectively. Flowrate of water had a significant effect on adsorption performance. The resin could be regenerated successfully using 2% (w/v) NaOH solution and used multiple times for water treatment.


Author(s):  
Csilla Zsófia Torma ◽  
Edit Cséfalvay

We report here a proposed process water treatment design guide: selection of nanofiltration membrane, membrane test for model solutions and test for pre-treated industrial process water. We also suggest a complex evaluation method, which can help in decision-making process. Membrane selection experiments showed that high flux coupled with high enough rejection is favored to shorten treatment time and perform acceptable rejection. The effect of composition was studied during constant total salt concentration and it was revealed that the DL membrane had stable flux and high rejection. In case of pre-treated industrial process water a more complex effect could be observed: the counter ions present in the feed solution, moreover the complexing agents as well as other properties of the feed could lower the membrane’s rejection, simultaneously decreasing the flux. Nanofiltration though still showed advantages, which allowed its implementation into an existing industrial scale technological chain. At a recovery rate of 0.2-0.5 all the environmental requirements could be fulfilled, and the permeate leaving the technology could be fed into the city sewer system.


2013 ◽  
Vol 53 (13) ◽  
pp. 5160-5171 ◽  
Author(s):  
Alberto Quaglia ◽  
Alessandra Pennati ◽  
Milos Bogataj ◽  
Zdravko Kravanja ◽  
Gürkan Sin ◽  
...  

2012 ◽  
Vol 65 (10) ◽  
pp. 1895-1902 ◽  
Author(s):  
Rita Hilliges ◽  
Eberhard Steinle ◽  
Bernhard Böhm

The two-staged WWTP ‘Gut Grosslappen’ has a capacity of 2 mio. PE. It comprises a pre-denitrification in the first stage using recirculation from the nitrifying second stage. A residual post-denitrification in a downstream sand filter is required in order to achieve the effluent standards. Presently the process water from sludge digestion is treated separately by nitrification/denitrification. Due to necessary reconstruction of the biological stages, the process water treatment was included in the future overall process concept of the WWTP. A case study was conducted comparing the processes nitritation/denitrititation and deammonification with nitrification/denitrification including their effect on the operational costs of the planned main flow treatment. Besides the different operating costs the investment costs required for the process water treatment played a significant role. Six cases for the process water treatment were compared. As a result, in Munich deammonification can only be recommended for long-term future developments, due to the high investment costs, compared with the nitritation/denitritation alternative realizable in existing tanks. The savings concerning aeration, sludge disposal and chemicals were not sufficient to compensate for the additional investment costs. Due to the specific circumstances in Munich, for the time being the use of existing tanks for nitritation/denitritation proved to be most economical.


2001 ◽  
Vol 30 (1) ◽  
pp. 143-156 ◽  
Author(s):  
V. M. Palacios ◽  
I. Caro ◽  
L. Pérez

Sign in / Sign up

Export Citation Format

Share Document