scholarly journals Chlorocob(II)alamin Formation Which Enhances the Thiol Oxidase Activity of the B12-Trafficking Protein CblC

2020 ◽  
Vol 59 (21) ◽  
pp. 16065-16072
Author(s):  
Zhu Li ◽  
Elizabeth D. Greenhalgh ◽  
Umar T. Twahir ◽  
Albert Kallon ◽  
Markus Ruetz ◽  
...  
2012 ◽  
Vol 93 (10) ◽  
pp. 2142-2151 ◽  
Author(s):  
Yong Hou ◽  
Qingyou Xia ◽  
Y. Adam Yuan

Bombyx mori nucleopolyhedrovirus (BmNPV) triggers the global shutdown of host silkworm gene expression and protein synthesis approximately 12–18 h post-infection. Genome sequence analysis suggests that BmNPV ORF75 could be a flavin adenine dinucleotide (FAD)-linked thiol oxidase essential for virion assembly and virus propagation. Here, we report the crystal structure of BmNPV ORF75 at 2.1 Å (0.21 nm). The structure of BmNPV ORF75 resembles that of the thiol oxidase domain of human quiescin thiol oxidase (QSOX), displaying a pseudo-dimer of canonical and non-canonical thiol oxidase domains. However, BmNPV ORF75 is further dimerized by its C-terminal canonical thiol oxidase domain. Within the unique quaternary structural arrangement, the FAD-binding pocket and the characteristic CXXC motif from each monomer is 35 Å (3.5 nm) away from that of its corresponding molecule, which suggests that BmNPV ORF75 might adopt a deviant mechanism from that of QSOX to catalyse disulfide bond formation. Our thiol oxidase activity assay on the point mutations of the conserved residues participating in FAD recognition reveals an aromatic cage next to the FAD isoalloxazine moiety for substrate binding. These data suggest that the thiol oxidase activity of BmNPV ORF75 could be critical to catalyse the formation of the disulfide bonds of certain BmNPV proteins essential for BmNPV virion assembly.


2001 ◽  
Vol 277 (3) ◽  
pp. 1906-1911 ◽  
Author(s):  
Christine C. Winterbourn ◽  
Alexander V. Peskin ◽  
Helena N. Parsons-Mair

2017 ◽  
Vol 292 (23) ◽  
pp. 9733-9744 ◽  
Author(s):  
Zhu Li ◽  
Aranganathan Shanmuganathan ◽  
Markus Ruetz ◽  
Kazuhiro Yamada ◽  
Nicholas A. Lesniak ◽  
...  

Author(s):  
W. Allen Shannon ◽  
Hannah L. Wasserkrug ◽  
andArnold M. Seligman

The synthesis of a new substrate, p-N,N-dimethylamino-β-phenethylamine (DAPA)3 (Fig. 1) (1,2), and the testing of it as a possible substrate for tissue amine oxidase activity have resulted in the ultracytochemical localization of enzyme oxidase activity referred to as DAPA oxidase (DAPAO). DAPA was designed with the goal of providing an amine that would yield on oxidation a stronger reducing aldehyde than does tryptamine in the histochemical demonstration of monoamine oxidase (MAO) with tetrazolium salts.Ultracytochemical preparations of guinea pig heart, liver and kidney and rat heart and liver were studied. Guinea pig kidney, known to exhibit high levels of MAO, appeared the most reactive of the tissues studied. DAPAO reaction product appears primarily in mitochondrial outer compartments and cristae (Figs. 2-4). Reaction product is also localized in endoplasmic reticulum, cytoplasmic vacuoles and nuclear envelopes (Figs. 2 and 3) and in the sarcoplasmic reticulum of heart.


1982 ◽  
Vol 48 (03) ◽  
pp. 277-282 ◽  
Author(s):  
I Nathan ◽  
A Dvilansky ◽  
T Yirmiyahu ◽  
M Aharon ◽  
A Livne

SummaryEchis colorata bites cause impairment of platelet aggregation and hemostatic disorders. The mechanism by which the snake venom inhibits platelet aggregation was studied. Upon fractionation, aggregation impairment activity and L-amino acid oxidase activity were similarly separated from the crude venom, unlike other venom enzymes. Preparations of L-amino acid oxidase from E.colorata and from Crotalus adamanteus replaced effectively the crude E.colorata venom in impairment of platelet aggregation. Furthermore, different treatments known to inhibit L-amino acid oxidase reduced in parallel the oxidase activity and the impairment potency of both the venom and the enzyme preparation. H2O2 mimicked characteristically the impairment effects of L-amino acid oxidase and the venom. Catalase completely abolished the impairment effects of the enzyme and the venom. It is concluded that hydrogen peroxide formed by the venom L-amino acid oxidase plays a role in affecting platelet aggregation and thus could contribute to the extended bleeding typical to persons bitten by E.colorata.


Sign in / Sign up

Export Citation Format

Share Document