Correlation Gas Chromatographic Study of the Vaporization Enthalpies and Vapor Pressures of the Major Sesquiterpene Hydrocarbons in Patchouli Oil

Author(s):  
Megan Orf ◽  
Manu Kurian ◽  
Carissa Nelson ◽  
Daniel Simmons ◽  
Lorna Espinosa ◽  
...  
Author(s):  
M. Yamada ◽  
K. Ueda ◽  
K. Kuboki ◽  
H. Matsushima ◽  
S. Joens

Use of variable Pressure SEMs is spreading among electron microscopists The variable Pressure SEM does not necessarily require specimen Preparation such as fixation, dehydration, coating, etc which have been required for conventional scanning electron microscopy. The variable Pressure SEM allows operating Pressure of 1˜270 Pa in specimen chamber It does not allow microscopy of water-containing specimens under a saturated vapor Pressure of water. Therefore, it may cause shrink or deformation of water-containing soft specimens such as plant cells due to evaporation of water. A solution to this Problem is to lower the specimen temperature and maintain saturated vapor Pressures of water at low as shown in Fig. 1 On this technique, there is a Published report of experiment to have sufficient signal to noise ratio for scondary electron imaging at a relatively long working distance using an environmental SEM. We report here a new low temperature microscopy of soft Plant cells using a variable Pressure SEM (Hitachi S-225ON).


2017 ◽  
Vol 35 (9) ◽  
pp. 1008 ◽  
Author(s):  
Qingzhi Wang ◽  
Hongxia Zhao ◽  
Yan Wang ◽  
Qing Xie ◽  
Jingwen Chen ◽  
...  

1969 ◽  
Vol 34 (9) ◽  
pp. 2652-2661
Author(s):  
L. Scháněl ◽  
P. Schneider ◽  
V. Bažant

1980 ◽  
Vol 25 (4) ◽  
pp. 331-332 ◽  
Author(s):  
Marie Christine Abraham ◽  
Maurice Abraham ◽  
James Sangster

2021 ◽  
Vol 66 (4) ◽  
pp. 1709-1716
Author(s):  
Greta Bikelytė ◽  
Martin A. C. Härtel ◽  
Marcel Holler ◽  
Andreas Neuer ◽  
Thomas M. Klapötke

2021 ◽  
Vol 22 (2) ◽  
pp. 890
Author(s):  
Luccas M. Barata ◽  
Eloísa H. Andrade ◽  
Alessandra R. Ramos ◽  
Oriel F. de Lemos ◽  
William N. Setzer ◽  
...  

This study evaluated the chemical compositions of the leaves and fruits of eight black pepper cultivars cultivated in Pará State (Amazon, Brazil). Hydrodistillation and gas chromatography–mass spectrometry were employed to extract and analyze the volatile compounds, respectively. Sesquiterpene hydrocarbons were predominant (58.5–90.9%) in the cultivars “Cingapura”, “Equador”, “Guajarina”, “Iaçará”, and “Kottanadan”, and “Bragantina”, “Clonada”, and “Uthirankota” displayed oxygenated sesquiterpenoids (50.6–75.0%). The multivariate statistical analysis applied using volatile composition grouped the samples into four groups: γ-Elemene, curzerene, and δ-elemene (“Equador”/“Guajarina”, I); δ-elemene (“Iaçará”/“Kottanadan”/“Cingapura”, II); elemol (“Clonada”/“Uthirankota”, III) and α-muurolol, bicyclogermacrene, and cubebol (“Bragantina”, IV). The major compounds in all fruit samples were monoterpene hydrocarbons such as α-pinene, β-pinene, and limonene. Among the cultivar leaves, phenolics content (44.75–140.53 mg GAE·g−1 FW), the enzymatic activity of phenylalanine-ammonia lyase (20.19–57.22 µU·mL−1), and carotenoids (0.21–2.31 µg·mL−1) displayed significant variations. Due to black pepper’s susceptibility to Fusarium infection, a molecular docking analysis was carried out on Fusarium protein targets using each cultivar’s volatile components. F. oxysporum endoglucanase was identified as the preferential protein target of the compounds. These results can be used to identify chemical markers related to the susceptibility degree of black pepper cultivars to plant diseases prevalent in Pará State.


Sign in / Sign up

Export Citation Format

Share Document