Interconversion of Specific and Equivalent Conductivity of Ions in Electrolyte Solution: Effects of High Ionic Valence and Temperature

Author(s):  
Dan Fraenkel
2011 ◽  
Vol 135 (16) ◽  
pp. 164511 ◽  
Author(s):  
T. Yamaguchi ◽  
T. Matsuoka ◽  
S. Koda

Author(s):  
M. O. Magnusson ◽  
D. G. Osborne ◽  
T. Shimoji ◽  
W. S. Kiser ◽  
W. A. Hawk

Short term experimental and clinical preservation of kidneys is presently best accomplished by hypothermic continuous pulsatile perfusion with cryoprecipitated and millipore filtered plasma. This study was undertaken to observe ultrastructural changes occurring during 24-hour preservation using the above mentioned method.A kidney was removed through a midline incision from healthy mongrel dogs under pentobarbital anesthesia. The kidneys were flushed immediately after removal with chilled electrolyte solution and placed on a LI-400 preservation system and perfused at 8-10°C. Serial kidney biopsies were obtained at 0-½-1-2-4-8-16 and 24 hours of preservation. All biopsies were prepared for electron microscopy. At the end of the preservation period the kidneys were autografted.


1980 ◽  
Vol 45 (6) ◽  
pp. 1639-1645 ◽  
Author(s):  
Jindřich Novák ◽  
Ivo Sláma

The dependence of the equivalent conductivity on the temperature and composition of the Ca(NO3)2-CaI2-H2O system was studied. The ionic fraction [I-]/([I-] + [NO-3]) was changed from 0.1 to 0.5, the mole fraction of calcium salts (assumed in anhydrous form in the presence of free water molecules) was 0.075-0.200. The equivalent conductivity was found to be a linear function of the ionic fraction at constant temperature and salt concentration.


1993 ◽  
Vol 58 (9) ◽  
pp. 2059-2068
Author(s):  
Zdeněk Palatý

The paper deals with correlation of density of aqueous solutions of NaOH, KOH, Na2CO3, and K2CO3 using an equation based on the additivity of molar volumes of components, the components being water and so-called basic electrolyte solution with precisely defined and measurable properties. The procedure mentioned has been tested at 20 °C using literature data. The procedure has been shown to give very precise results.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4409
Author(s):  
J. Landon Tyler ◽  
Robert L. Sacci ◽  
Jagjit Nanda

Electrolyte stability can be improved by incorporating complexing agents that bind key decomposition intermediates and slow down decomposition. We show that hexamethyl-phosphoramide (HMPA) extends both the thermal stability threshold of sodium hexafluorophosphate (NaPF6) in dimethoxyethane (DME) electrolyte and the cycle life of double-layer capacitors. HMPA forms a stable complex with PF5, an intermediate in PF6 anion thermal degradation. Unbound, this intermediate leads to autocatalytic degradation of the electrolyte solution. The results of electrochemical impedance spectroscopy (EIS) and galvanostatic cycling measurements show large changes in the cell without the presence of HMPA at higher temperatures (≥60 °C). Fourier transform infrared spectroscopy (FTIR) on the liquid and gas phase of the electrolyte shows without HMPA the formation of measurable amounts of PF5 and HF. The complimentary results of these measurements proved the usefulness of using Lewis bases such as HMPA to inhibit the degradation of the electrolyte solution at elevated temperatures and potentially lead to improve cycle life of a nonaqueous capacitor. The results showed a large increase in capacitance retention during cycling (72% retention after 750,000 cycles). The results also provide evidence of major decomposition processes (0% capacitance retention after 100,000 cycles) that take place at higher temperatures without the additive of a thermal stability additive such as HMPA.


Sign in / Sign up

Export Citation Format

Share Document