scholarly journals Enantiomerically Pure [2.2]Paracyclophane-4-thiol: A Planar Chiral Sulfur-Based Building Block Readily Available by Resolution with an Amino Acid Chiral Auxiliary

2016 ◽  
Vol 81 (9) ◽  
pp. 3961-3966 ◽  
Author(s):  
Adrien Vincent ◽  
Damien Deschamps ◽  
Thomas Martzel ◽  
Jean-François Lohier ◽  
Christopher J. Richards ◽  
...  
2020 ◽  
Vol 24 (8) ◽  
pp. 900-908
Author(s):  
Ram Naresh Yadav ◽  
Amrendra K Singh ◽  
Bimal Banik

Numerous O (oxa)- and S (thia)-glycosyl esters and their analogous glycosyl acids have been accomplished through stereoselective glycosylation of various peracetylated bromo sugar with benzyl glycolate using InBr3 as a glycosyl promotor followed by in situ hydrogenolysis of resulting glycosyl ester. A tandem glycosylating and hydrogenolytic activity of InBr3 has been successfully investigated in a one-pot procedure. The resulting synthetically valuable and virtually unexplored class of β-CMGL (glycosyl acids) could serve as an excellent potential chiral auxiliary in the asymmetric synthesis of a wide range of enantiomerically pure medicinally prevalent β-lactams and other bioactive molecules of diverse medicinal interest.


2021 ◽  
Author(s):  
Daniel Bindl ◽  
Elisabeth Heinemann ◽  
Pradeep Kumar Mandal ◽  
Ivan Huc
Keyword(s):  

A novel chiral aromatic δ-amino acid building block was shown to fully induce handedness in quinoline oligoamide foldamers with the possibility to further increase the bias by combining multiple of...


2008 ◽  
Vol 73 (23) ◽  
pp. 9334-9339 ◽  
Author(s):  
Douglass F. Taber ◽  
James F. Berry ◽  
Timothy J. Martin

2017 ◽  
Vol 13 ◽  
pp. 2153-2156 ◽  
Author(s):  
Shital Kumar Chattopadhyay ◽  
Suman Sil ◽  
Jyoti Prasad Mukherjee

A new synthesis of the important amino acid 2-aminosuberic acid from aspartic acid is reported. The methodology involves the alternate preparation of (S)-2-aminohept-6-enoate ester as a building block and its diversification through a cross-metathesis reaction to prepare the title compounds. The utility of the protocol is demonstrated through the preparation of three suberic acid derivatives of relevance to the design and the synthesis of peptides of biological relevance.


Synthesis ◽  
2022 ◽  
Author(s):  
Dishu Zeng ◽  
Tianbao Yang ◽  
Niu Tang ◽  
Wei Deng ◽  
Jiannan Xiang ◽  
...  

A simple, mild, green and efficient method for the synthesis of 2-aminobenzamides was highly desired in organic synthesis. Herein, we developed an efficient, one-pot strategy for the synthesis of 2-aminobenzamides with high yields irradiated by UV light. 32 examples proceeded successfully by this photo-induced protocol. The yield reached up to 92%. The gram scale was also achieved easily. This building block could be applied in the preparation of quinazolinones derivatives. Amino acid derivatives could be employed smoothly at room temperature. Finally, a plausible mechanism was proposed.


1988 ◽  
Vol 29 (27) ◽  
pp. 3315-3318 ◽  
Author(s):  
David J. Aitken ◽  
Jacques Royer ◽  
Henri-Philippe Husson

2021 ◽  
Author(s):  
Hans Renata ◽  
Emily Shimizu ◽  
Christian Zwick

We report the functional characterization of two iron- and a-ketoglutarate-dependent dioxygenases that are capable of hydroxylating free-standing glutamine at its C3 and C4 position respectively. In particular, the C4 hydroxylase, Q4Ox, catalyzes the reaction with approximately 4,300 total turnover numbers, facilitating synthesis of a solid-phase compatible building block and stereochemical elucidation at the C4 position of the hydroxylated product. This work will enable the development of novel synthetic strategies to prepare useful glutamine derivatives and stimulate further discoveries of new amino acid hydroxylases with distinct substrate specificities.<br>


2021 ◽  
Author(s):  
Hans Renata ◽  
Emily Shimizu ◽  
Christian Zwick

We report the functional characterization of two iron- and a-ketoglutarate-dependent dioxygenases that are capable of hydroxylating free-standing glutamine at its C3 and C4 position respectively. In particular, the C4 hydroxylase, Q4Ox, catalyzes the reaction with approximately 4,300 total turnover numbers, facilitating synthesis of a solid-phase compatible building block and stereochemical elucidation at the C4 position of the hydroxylated product. This work will enable the development of novel synthetic strategies to prepare useful glutamine derivatives and stimulate further discoveries of new amino acid hydroxylases with distinct substrate specificities.<br>


Sign in / Sign up

Export Citation Format

Share Document