Design Guidelines to Elongate Spin–Lattice Relaxation Times of Porphyrins with Large Triplet Electron Polarization

Author(s):  
Akio Yamauchi ◽  
Saiya Fujiwara ◽  
Koki Nishimura ◽  
Yoichi Sasaki ◽  
Kenichiro Tateishi ◽  
...  
1989 ◽  
Vol 149 ◽  
Author(s):  
E. J. Vanderheiden ◽  
G. A. Williams ◽  
P. C. Taylor ◽  
F. Finger ◽  
W. Fuhs

ABSTRACT1H NMR has been employed to study the local environments of bonded hydrogen and trapped molecular hydrogen (H2) in a series of a-Si1−xGex:H alloys. There is a monotonic decrease of bonded hydrogen with increasing x from ≈ 10 at. % at x = 0 (a-Si:H) to ≈ 1 at. % at x = 1 (a-Ge:H). The amplitude of the broad 1H NMR line, which is attributed to clustered bonded hydrogen, decreases continuously across the system. The amplitude of the narrow 1H NMR line, which is attributed to bonded hydrogen essentially randomly distributed in the films, decreases as x increases from 0 to ≈ 0.2. From x = 0.2 to x ≈ 0.6 the amplitude of the narrow 1H NMR line is essentially constant, and for x ≥ 0.6 the amplitude decreases once again. The existence of trapped H2 molecules is inferred indirectly by their influence on the temperature dependence of the spin-lattice relaxation times, T1. Through T1, measurements it is determined that the trapped H2 concentration drops precipitously between x = 0.1 and x = 0.2, but is fairly constant for 0.2 ≤ x ≤ 0.6. For a-Si:H (x = 0) the H2 concentration is ≈ 0.1 at. %, while for x ≥ 0.2 the concentration of H2 is ≤ 0.02 at. %.


1995 ◽  
Vol 99 (12) ◽  
pp. 4148-4154 ◽  
Author(s):  
Eddy Walther Hansen ◽  
Ralf Schmidt ◽  
Michael Stoecker ◽  
Duncan Akporiaye

2004 ◽  
Vol 167 (2) ◽  
pp. 221-227 ◽  
Author(s):  
Ferenc Murányi ◽  
Ferenc Simon ◽  
Ferenc Fülöp ◽  
András Jánossy

Sign in / Sign up

Export Citation Format

Share Document