Amorphous Order and Nonlinear Susceptibilities in Glassy Materials

Author(s):  
Giulio Biroli ◽  
Jean-Philippe Bouchaud ◽  
Francois Ladieu
Keyword(s):  
2020 ◽  
Vol 5 (1) ◽  
pp. 18
Author(s):  
Simon Evertz ◽  
Stephan Prünte ◽  
Lena Patterer ◽  
Amalraj Marshal ◽  
Damian M. Holzapfel ◽  
...  

Due to their unique property combination of high strength and toughness, metallic glasses are promising materials for structural applications. As the behaviour of metallic glasses depends on the electronic structure which in turn is defined by chemical composition, we systematically investigate the influence of B concentration on glass transition, topology, magnetism, and bonding for B concentrations x = 2 to 92 at.% in the (Co6.8±3.9Ta)100−xBx system. From an electronic structure and coordination point of view, the B concentration range is divided into three regions: Below 39 ± 5 at.% B, the material is a metallic glass due to the dominance of metallic bonds. Above 69 ± 6 at.%, the presence of an icosahedra-like B network is observed. As the B concentration is increased above 39 ± 5 at.%, the B network evolves while the metallic coordination of the material decreases until the B concentration of 67 ± 5 at.% is reached. Hence, a composite is formed. It is evident that, based on the B concentration, the ratio of metallic bonding to icosahedral bonding in the composite can be controlled. It is proposed that, by tuning the coordination in the composite region, glassy materials with defined plasticity and processability can be designed.


1990 ◽  
Vol 13 (1) ◽  
pp. 53-58 ◽  
Author(s):  
S. Yannacopoulos ◽  
S.O. Kasap
Keyword(s):  

2021 ◽  
Vol 38 (10) ◽  
pp. 106101
Author(s):  
Xiaoyan Sun ◽  
Huaguang Wang ◽  
Hao Feng ◽  
Zexin Zhang ◽  
Yuqiang Ma

Identification of the glass formation process in various conditions is of importance for fundamental understanding of the mechanism of glass transitions as well as for developments and applications of glassy materials. We investigate the role of pinning in driving the transformation of crystal into glass in two-dimensional colloidal suspensions of monodisperse microspheres. The pinning is produced by immobilizing a fraction of microspheres on the substrate of sample cells where the mobile microspheres sediment. Structurally, the crystal-hexatic-glass transition occurs with increasing the number fraction of pinning ρ pinning, and the orientational correlation exhibits a change from quasi-long-range to short-range order at ρ pinning = 0.02. Interestingly, the dynamics shows a non-monotonic change with increasing the fraction of pinning. This is due to the competition between the disorder that enhances the dynamics and the pinning that hinders the particle motions. Our work highlights the important role of the pinning on the colloidal glass transition, which not only provides a new strategy to prevent crystallization forming glass, but also is helpful for understanding of the vitrification in colloidal systems.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tomasz K. Pietrzak ◽  
Agata Jarocka ◽  
Cezariusz Jastrzębski ◽  
Tomasz Płociński ◽  
Marek Wasiucionek ◽  
...  

AbstractBismuth sesquioxide ($$\hbox {Bi}_2\hbox {O}_3$$ Bi 2 O 3 ) draws much attention due to wide variety of phases in which it exists depending on the temperature. Among them, $$\delta$$ δ phase is specially interesting because of its high oxide ion conductivity and prospects of applications as an electrolyte in fuel cells. Unfortunately, it is stable only in a narrow temperature range ca. 730–830 $$^{\circ }$$ ∘ C. Our group has developed a facile and reproducible two-stage method of stabilizing $$\hbox {Bi}_2\hbox {O}_3$$ Bi 2 O 3 crystalline phases confined in nanocrystallites embedded in amorphous matrix. In the first stage, glassy materials were obtained by a routine melt-quenching method: pure $$\hbox {Bi}_2\hbox {O}_3$$ Bi 2 O 3 powders were melted in porcelain crucibles and fast-cooled down to room temperature. In the second step, the materials were appropriately heat-treated to induce formation of crystallites of $$\beta$$ β , $$\delta$$ δ or $$\gamma$$ γ $$\hbox {Bi}_2\hbox {O}_3$$ Bi 2 O 3 phases confined in a glassy matrix, depending on the process conditions. It was found out that the vitrification of the initial $$\hbox {Bi}_2\hbox {O}_3$$ Bi 2 O 3 and the subsequent nanocrystallization were unexpectedly possible due to the presence of some Al, and Si impurities from the crucibles. Systematic DTA, XRD, optical, Raman and SEM/EDS studies were carried out to investigate the influence of the syntheses processes and allowed us to determine conditions under which the particular phases appear and remain stable down to room temperature.


1977 ◽  
Vol 66 (12) ◽  
pp. 5536-5550 ◽  
Author(s):  
W. B. Mims ◽  
J. Peisach ◽  
J. L. Davis

Sign in / Sign up

Export Citation Format

Share Document