boson peak
Recently Published Documents


TOTAL DOCUMENTS

351
(FIVE YEARS 43)

H-INDEX

42
(FIVE YEARS 3)

Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1482
Author(s):  
Reiner Zorn ◽  
Paulina Szymoniak ◽  
Mohamed A. Kolmangadi ◽  
Richard Malpass-Evans ◽  
Neil B. McKeown ◽  
...  

The microscopic diffusion and the low frequency density of states (VDOS) of PIM-EA-TB(CH3) are investigated by inelastic and quasi-elastic neutron scattering where also the demethylated counterpart of PIM-EA-TB(H2) is considered. These intrinsic microporous polymers are characterized by large BET surface area values of several hundred m2/g and pore sizes between 0.5 and 2 nm. Detailed comparison is made to the archetype of polymers of intrinsic microporosity, PIM-1, and polynorbornenes also bearing a microporosity. Due to the wavelength of neutrons, the diffusion and vibrations can be addressed on microscopic length and time scales. From the inelastic neutron scattering experiments the low frequency density of states (VDOS) is estimated which shows excess contributions to the Debye-type VDOS known as Boson peak. It was found that the maximum frequency of the Boson peak decreases with increasing microporosity characterized by the BET surface area. However, besides the BET surface area, additional factors such as the backbone stiffness govern the maximum frequency of the Boson peak. Further the mean squared displacement related to microscopic motions was estimated from elastic fixed window scans. At temperatures above 175 K, the mean squared displacement PIM-EA-TB(CH3) is higher than that for the demethylated counterpart PIM-EA-TB(H2). The additional contribution found for PIM-EA-TB(CH3) is ascribed to the rotation of the methyl group in this polymer because the only difference between the two structures is that PIM-EA-TB(CH3) has methyl groups where PIM-EA-TB(H2) has none. A detailed comparison of the molecular dynamics is also made to that of PIM-1 and the microporous polynorbornene PTCNSi1. The manuscript focuses on the importance of vibrations and the localized molecular mobility characterized by the microscopic diffusion on the gas transport in polymeric separation membranes. In the frame of the random gate model localized fluctuations can open or close bottlenecks between pores to enable the diffusion of gas molecules. 


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Shuai Ren ◽  
Hong-Xiang Zong ◽  
Xue-Fei Tao ◽  
Yong-Hao Sun ◽  
Bao-An Sun ◽  
...  

AbstractStrain glass is a glassy state with frozen ferroelastic/martensitic nanodomains in shape memory alloys, yet its nature remains unclear. Here, we report a glassy feature in strain glass that was thought to be only present in structural glasses. An abnormal hump is observed in strain glass around 10 K upon normalizing the specific heat by cubed temperature, similar to the boson peak in metallic glass. The simulation studies show that this boson-peak-like anomaly is caused by the phonon softening of the non-transforming matrix surrounding martensitic domains, which occurs in a transverse acoustic branch not associated with the martensitic transformation displacements. Therefore, this anomaly neither is a relic of van Hove singularity nor can be explained by other theories relying on structural disorder, while it verifies a recent theoretical model without any assumptions of disorder. This work might provide fresh insights in understanding the nature of glassy states and associated vibrational properties.


Author(s):  
Shin Nakagawa ◽  
Yasuhiro Fujii ◽  
Suguru Kitani ◽  
Hitoshi Kawaji ◽  
Akitoshi Koreeda ◽  
...  

2021 ◽  
Vol 5 (8) ◽  
Author(s):  
Itai Zbeda ◽  
Ilana Bar ◽  
Z. Ovadyahu
Keyword(s):  

2021 ◽  
Vol 24 (3) ◽  
pp. 312-318
Author(s):  
A.V. Stronski ◽  
◽  
T.S. Kavetskyy ◽  
L.O. Revutska ◽  
I. Kaban ◽  
...  

The parameters of the boson peak (BP) and the first sharp diffraction peak (FSDP) in (As2S3)x(GeS2)1x glasses measured using high-resolution Raman spectroscopy and high-energy synchrotron X-ray diffraction measurements are examined as a function of x. It has been found that there is no correlation between the positions of BP and FSDP. The BP position shows a nonlinear composition behavior with a maximum at about x = 0.4, whereas the FSDP position changes virtually linearly with x. The intensities of both BP and FSDP show nonlinear composition dependences with the slope changes at x = 0.4, although there is no direct proportionality. Analysis of the partial structure factors for the glasses with x = 0.2, 0.4 and 0.6 obtained in another study has shown that the cation-cation atomic pairs of Ge–Ge, Ge–As and As–As make the largest contribution to FSDP, where the Ge–Ge and Ge–As pairs are dominant.


2021 ◽  
Author(s):  
Andrew Farrell ◽  
Mario González Jiménez ◽  
Nikita Tukachev ◽  
David A. Turton ◽  
Ben A. Russell ◽  
...  
Keyword(s):  

2021 ◽  
Vol 11 (15) ◽  
pp. 6733
Author(s):  
Mira Naftaly ◽  
Andrew Gregory

Z-cut single-crystal quartz and vitreous silica (silica glass or fused silica) were evaluated for use as reference materials for terahertz and microwave measurements of complex permittivity, with Z-cut quartz confirmed as being suitable. Measurements of refractive indices and absorption coefficients for o-ray and e-ray in quartz and for vitreous silica are reported at frequencies between 0.2 and 6 THz and at 36 and 144 GHz, and compared with data reported in the literature. A previously unreported broad band was seen in the extraordinary absorption of quartz. The Boson peak in silica glass absorption was examined, and for the first time, two negative relationships have been observed: between the refractive index and the Boson peak frequency, and between the Boson peak height and its frequency.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Maiko Kofu ◽  
Ryuta Watanuki ◽  
Toshiro Sakakibara ◽  
Seiko Ohira-Kawamura ◽  
Kenji Nakajima ◽  
...  

AbstractGlassy magnetic behavior has been observed in a wide range of crystalline magnetic materials called spin glass. Here, we report spin glass behavior in a structural glass of a magnetic ionic liquid, C4mimFeCl4. Magnetization measurements demonstrate that an antiferromagnetic ordering occurs at TN = 2.3 K in the crystalline state, while a spin glass transition occurs at TSG = 0.4 K in the structural glass state. In addition, localized magnetic excitations were found in the spin glass state by inelastic neutron scattering, in contrast to spin-wave excitations in the ordered phase of the crystalline sample. The localized excitation was scaled by the Bose population factor below TSG and gradually disappeared above TSG. This feature is highly reminiscent of boson peaks commonly observed in structural glasses. We suggest the “magnetic” boson peak to be one of the inherent dynamics of a spin glass state.


2021 ◽  
Author(s):  
Andrew Farrell ◽  
Mario González Jiménez ◽  
Nikita Tukachev ◽  
David A. Turton ◽  
Ben A. Russell ◽  
...  

<p>Phenomena ranging from vitrification to crystal nucleation are governed by locally ordered structures, in otherwise disordered phases, that can either inhibit or favour the growth of macroscopic order. However, such structures are ephemeral, do not typically have distinct spectral features, and are therefore critically important but largely unobservable by current methods. Illuminating these structures therefore presents the single greatest challenge in physical chemistry. The boson peak is characteristic of glasses and represents the locally ordered structures inhibiting crystallisation but is typically obscured by other spectral contributions. Here we show that depolarised Raman scattering—obtained using femtosecond optical Kerr-effect spectroscopy—in liquids consisting of highly symmetric molecules can be used to isolate the boson peak thereby allowing detailed characterisation of the intermolecular potential-energy landscape for the first time.</p>


2021 ◽  
Author(s):  
Andrew Farrell ◽  
Mario González Jiménez ◽  
Nikita Tukachev ◽  
David A. Turton ◽  
Ben A. Russell ◽  
...  

<p>Phenomena ranging from vitrification to crystal nucleation are governed by locally ordered structures, in otherwise disordered phases, that can either inhibit or favour the growth of macroscopic order. However, such structures are ephemeral, do not typically have distinct spectral features, and are therefore critically important but largely unobservable by current methods. Illuminating these structures therefore presents the single greatest challenge in physical chemistry. The boson peak is characteristic of glasses and represents the locally ordered structures inhibiting crystallisation but is typically obscured by other spectral contributions. Here we show that depolarised Raman scattering—obtained using femtosecond optical Kerr-effect spectroscopy—in liquids consisting of highly symmetric molecules can be used to isolate the boson peak thereby allowing detailed characterisation of the intermolecular potential-energy landscape for the first time.</p>


Sign in / Sign up

Export Citation Format

Share Document