Excitonic Coupling on a Heliobacterial Symmetrical Type-I Reaction Center: Comparison with Photosystem I

2019 ◽  
Vol 124 (2) ◽  
pp. 389-403
Author(s):  
Hirotaka Kitoh-Nishioka ◽  
Yasuteru Shigeta ◽  
Shigeru Itoh ◽  
Akihiro Kimura
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Tasuku Hamaguchi ◽  
Keisuke Kawakami ◽  
Kyoko Shinzawa-Itoh ◽  
Natsuko Inoue-Kashino ◽  
Shigeru Itoh ◽  
...  

AbstractAcaryochloris marina is one of the cyanobacterial species that can use far-red light to drive photochemical reactions for oxygenic photosynthesis. Here, we report the structure of A. marina photosystem I (PSI) reaction center, determined by cryo-electron microscopy at 2.58 Å resolution. The structure reveals an arrangement of electron carriers and light-harvesting pigments distinct from other type I reaction centers. The paired chlorophyll, or special pair (also referred to as P740 in this case), is a dimer of chlorophyll d and its epimer chlorophyll d′. The primary electron acceptor is pheophytin a, a metal-less chlorin. We show the architecture of this PSI reaction center is composed of 11 subunits and we identify key components that help explain how the low energy yield from far-red light is efficiently utilized for driving oxygenic photosynthesis.


2021 ◽  
Author(s):  
Tasuku Hamaguchi ◽  
Keisuke Kawakami ◽  
Kyoko Shinzawa-Itoh ◽  
Natsuko Inoue-Kashino ◽  
Shigeru Itoh ◽  
...  

Abstract Acaryochloris marina is one of the cyanobacteria that can use far-red light to drive photochemical reactions for oxygenic photosynthesis. Here, we report the structure of the photosystem I reaction center of A. marina determined by cryo-electron microscopy at 2.5 Å resolution. The structure reveals an arrangement of electron carriers and light-harvesting pigments different from other type I reaction centers. The paired chlorophyll, so-called special pair, of P740 is a dimer of chlorophyll d/d′ and the primary electron acceptor is pheophytin a, a metal-less chlorin different from the chlorophyll a common to all other type I reaction centers. Here we show the architecture of the photosystem I reaction center is composed of 11 subunits and identify key components that help explain how the low energy yield from far-red light is efficiently utilized for driving oxygenic photosynthesis.


1992 ◽  
Vol 84 (4) ◽  
pp. 561-567 ◽  
Author(s):  
Poul E. Jensen ◽  
Michael Kristensen ◽  
Tine Hoff ◽  
Jan Lehmbeck ◽  
Bjarne M. Stummann ◽  
...  

1998 ◽  
Vol 95 (22) ◽  
pp. 13319-13323 ◽  
Author(s):  
Q. Hu ◽  
H. Miyashita ◽  
I. Iwasaki ◽  
N. Kurano ◽  
S. Miyachi ◽  
...  

2017 ◽  
Author(s):  
Tanai Cardona

AbstractWhen and how oxygenic photosynthesis originated remains controversial. Wide uncertainties exist for the earliest detection of biogenic oxygen in the geochemical record or the origin of water oxidation in ancestral lineages of the phylum Cyanobacteria. A unique trait of oxygenic photosynthesis is that the process uses a Type I reaction centre with a heterodimeric core, also known as Photosystem I, made of two distinct but homologous subunits, PsaA and PsaB. In contrast, all other known Type I reaction centres in anoxygenic phototrophs have a homodimeric core. A compelling hypothesis for the evolution of a heterodimeric Type I reaction centre is that the gene duplication that allowed the divergence of PsaA and PsaB was an adaptation to incorporate photoprotective mechanisms against the formation of reactive oxygen species, therefore occurring after the origin of water oxidation to oxygen. Here I show, using sequence comparisons and Bayesian relaxed molecular clocks that this gene duplication event may have occurred in the early Archean more than 3.4 billion years ago, long before the most recent common ancestor of crown group Cyanobacteria and the Great Oxidation Event. If the origin of water oxidation predated this gene duplication event, then that would place primordial forms of oxygenic photosynthesis at a very early stage in the evolutionary history of life.


Sign in / Sign up

Export Citation Format

Share Document