Microscale Thermophoresis in Liquids Induced by Plasmonic Heating and Characterized by Phase and Fluorescence Microscopies

2021 ◽  
Vol 125 (39) ◽  
pp. 21533-21542
Author(s):  
Sadman Shakib ◽  
Benoit Rogez ◽  
Samira Khadir ◽  
Julien Polleux ◽  
Alois Würger ◽  
...  
Author(s):  
Nicolas Fischer ◽  
Ean-Jeong Seo ◽  
Sara Abdelfatah ◽  
Edmond Fleischer ◽  
Anette Klinger ◽  
...  

SummaryIntroduction Differentiation therapy is a promising strategy for cancer treatment. The translationally controlled tumor protein (TCTP) is an encouraging target in this context. By now, this field of research is still at its infancy, which motivated us to perform a large-scale screening for the identification of novel ligands of TCTP. We studied the binding mode and the effect of TCTP blockade on the cell cycle in different cancer cell lines. Methods Based on the ZINC-database, we performed virtual screening of 2,556,750 compounds to analyze the binding of small molecules to TCTP. The in silico results were confirmed by microscale thermophoresis. The effect of the new ligand molecules was investigated on cancer cell survival, flow cytometric cell cycle analysis and protein expression by Western blotting and co-immunoprecipitation in MOLT-4, MDA-MB-231, SK-OV-3 and MCF-7 cells. Results Large-scale virtual screening by PyRx combined with molecular docking by AutoDock4 revealed five candidate compounds. By microscale thermophoresis, ZINC10157406 (6-(4-fluorophenyl)-2-[(8-methoxy-4-methyl-2-quinazolinyl)amino]-4(3H)-pyrimidinone) was identified as TCTP ligand with a KD of 0.87 ± 0.38. ZINC10157406 revealed growth inhibitory effects and caused G0/G1 cell cycle arrest in MOLT-4, SK-OV-3 and MCF-7 cells. ZINC10157406 (2 × IC50) downregulated TCTP expression by 86.70 ± 0.44% and upregulated p53 expression by 177.60 ± 12.46%. We validated ZINC10157406 binding to the p53 interaction site of TCTP and replacing p53 by co-immunoprecipitation. Discussion ZINC10157406 was identified as potent ligand of TCTP by in silico and in vitro methods. The compound bound to TCTP with a considerably higher affinity compared to artesunate as known TCTP inhibitor. We were able to demonstrate the effect of TCTP blockade at the p53 binding site, i.e. expression of TCTP decreased, whereas p53 expression increased. This effect was accompanied by a dose-dependent decrease of CDK2, CDK4, CDK, cyclin D1 and cyclin D3 causing a G0/G1 cell cycle arrest in MOLT-4, SK-OV-3 and MCF-7 cells. Our findings are supposed to stimulate further research on TCTP-specific small molecules for differentiation therapy in oncology.


Biosensors ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 60
Author(s):  
Anne Stinn ◽  
Jens Furkert ◽  
Stefan H. E. Kaufmann ◽  
Pedro Moura-Alves ◽  
Michael Kolbe

The aryl hydrocarbon receptor (AhR) is a highly conserved cellular sensor of a variety of environmental pollutants and dietary-, cell- and microbiota-derived metabolites with important roles in fundamental biological processes. Deregulation of the AhR pathway is implicated in several diseases, including autoimmune diseases and cancer, rendering AhR a promising target for drug development and host-directed therapy. The pharmacological intervention of AhR processes requires detailed information about the ligand binding properties to allow specific targeting of a particular signaling process without affecting the remaining. Here, we present a novel microscale thermophoresis-based approach to monitoring the binding of purified recombinant human AhR to its natural ligands in a cell-free system. This approach facilitates a precise identification and characterization of unknown AhR ligands and represents a screening strategy for the discovery of potential selective AhR modulators.


Author(s):  
Blanca López-Méndez ◽  
Bruno Baron ◽  
Chad A. Brautigam ◽  
Thomas A. Jowitt ◽  
Stefan H. Knauer ◽  
...  

RSC Advances ◽  
2017 ◽  
Vol 7 (64) ◽  
pp. 40218-40226 ◽  
Author(s):  
Mahesh K. Gangishetty ◽  
Adriana M. Fontes ◽  
Marcos Malta ◽  
Timothy L. Kelly ◽  
Robert W. J. Scott

Au@Pd nanotriangles are used to accelerate coupling and hydrogenation reactions by a plasmonic heating mechanism.


Biochemistry ◽  
2018 ◽  
Vol 57 (31) ◽  
pp. 4638-4643 ◽  
Author(s):  
Michelle H. Moon ◽  
Thomas A. Hilimire ◽  
Allix M. Sanders ◽  
John S. Schneekloth

Author(s):  
Ivan Corbeski ◽  
Velten Horn ◽  
Ramon A. van der Valk ◽  
Ulric B. le Paige ◽  
Remus T. Dame ◽  
...  

CLEO: 2014 ◽  
2014 ◽  
Author(s):  
Rafik Naccache ◽  
Anna Mazhorova ◽  
Matteo Clerici ◽  
Luca Razzari ◽  
Fiorenzo Vetrone ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document