differentiation therapy
Recently Published Documents


TOTAL DOCUMENTS

244
(FIVE YEARS 55)

H-INDEX

31
(FIVE YEARS 4)

2021 ◽  
Vol 70 (1) ◽  
pp. 83-97
Author(s):  
Remco J. Molenaar ◽  
Johanna W. Wilmink

Isocitrate dehydrogenase 1 and 2 (IDH1/2) are enzymes recurrently mutated in various types of cancer, including glioma, cholangiocarcinoma, chondrosarcoma, and acute myeloid leukemia. Mutant IDH1/2 induce a block in differentiation and thereby contribute to the stemness and oncogenesis of their cells of origin. Recently, small-molecule inhibitors of mutant IDH1/2 have been Food and Drug Administration–approved for the treatment of IDH1/2-mutated acute myeloid leukemia. These inhibitors decrease the stemness of the targeted IDH1/2-mutated cancer cells and induce their differentiation to more mature cells. In this review, we elucidate the mechanisms by which mutant IDH1/2 induce a block in differentiation and the biological and clinical effects of the release into differentiation by mutant-IDH1/2 inhibitors. (J Histochem Cytochem 70:83–97, 2022)


2021 ◽  
Author(s):  
Xueqin Zhu ◽  
Zheqi Liu ◽  
Shengcai Qi ◽  
Xin Zou ◽  
Tingwei Lu ◽  
...  

AbstractOral squamous cell carcinoma (OSCC) is widely recognized as an optimal model for precise medicine guided molecular biomarkers of cancer, however, few clinical practices were applied till now. Based on the data from our own studies and published papers, it was found that the expression of MAL was significantly decreased in epithelial cancer as compared with normal tissues, and exhibited a opposite association with pathological grade. To study the molecular events related to deficiency of MAL during carcinogenesis, occurrence and development, a Mal knockout mouse model was constructed and consistently reproduced and bred. The Mal knockout mice are highly vulnerable to tumor induction by carcinogen of 4NQO, evidenced by their extremely earlier carcinogenesis, higher incidence, and more aggressive growth. Analysis of scRNA-seq data indicated that Mal knockout mice lost the ability in maintaining epithelial cell differentiation and get more prone to carcinogen with a remarkably higher incidence of epithelial malignancy. Further analyses identified putative co-functional genes of MAL, including DSG1, AQP3 and S100A8, which are key factors in maintaining epithelial cell differentiation. To conclude, the current study exhibits the clinical significance and explains the tumor suppressing function of MAL. The results also suggest the potential of MAL and its co-functional genes being biomarkers for designing the prevention and/or differentiation therapy strategies in OSCC.SignificanceMAL is found to be strongly opposite with tumor pathological grade from clinical and in vivo studies in OSCC. We propose MAL and its co-functional genes, including DSG1, AQP3 and S100A8, as key factors in maintaining epithelial cell differentiation and are valuable targets for designing prevention and differentiation therapy strategies in OSCC.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Steven Ngo ◽  
Ethan P. Oxley ◽  
Margherita Ghisi ◽  
Maximilian M. Garwood ◽  
Mark D. McKenzie ◽  
...  

AbstractAcute myeloid leukemia (AML) is a malignancy of immature progenitor cells. AML differentiation therapies trigger leukemia maturation and can induce remission, but relapse is prevalent and its cellular origin is unclear. Here we describe high resolution analysis of differentiation therapy response and relapse in a mouse AML model. Triggering leukemia differentiation in this model invariably produces two phenotypically distinct mature myeloid lineages in vivo. Leukemia-derived neutrophils dominate the initial wave of leukemia differentiation but clear rapidly and do not contribute to residual disease. In contrast, a therapy-induced population of mature AML-derived eosinophil-like cells persists during remission, often in extramedullary organs. Using genetic approaches we show that restricting therapy-induced leukemia maturation to the short-lived neutrophil lineage markedly reduces relapse rates and can yield cure. These results indicate that relapse can originate from therapy-resistant mature AML cells, and suggest differentiation therapy combined with targeted eradication of mature leukemia-derived lineages may improve disease outcome.


Cancers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 5145
Author(s):  
Wai C. Chong ◽  
W. Samantha N. Jayasekara ◽  
Vijesh G. Vaghjiani ◽  
Sarah Parackal ◽  
Claire Sun ◽  
...  

Atypical teratoid rhabdoid tumour (ATRT) is a rare but highly aggressive undifferentiated solid tumour arising in the central nervous system and predominantly affecting infants and young children. ATRT is exclusively characterized by the inactivation of SMARCB1, a member of the SWI/SNF chromatin remodelling complex that is essential for the regulation of large sets of genes required for normal development and differentiation. Histone deacetylase inhibitors (HDACi) are a promising anticancer therapy and are able to mimic the normal acetylation functions of SMARCB1 in SMARCB1-deficient cells and drive multilineage differentiation in extracranial rhabdoid tumours. However, the potential efficacy of HDACi in ATRT is unknown. Here, we show that human ATRT cells are highly responsive to the HDACi panobinostat and that sustained treatment leads to growth arrest, increased cell senescence, decreased clonogenicity and induction of a neurogenesis gene-expression profile. Furthermore, in an orthotopic ATRT xenograft model, continuous panobinostat treatment inhibits tumour growth, increases survival and drives neuronal differentiation as shown by the expression of the neuronal marker, TUJ1. Collectively, this preclinical study supports the therapeutic potential of panobinostat-mediated differentiation therapy for ATRT.


Cancers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 4814
Author(s):  
Binjie Huang ◽  
Xin Yan ◽  
Yumin Li

Tumors pose a significant threat to human health. Although many methods, such as operations, chemotherapy and radiotherapy, have been proposed to eliminate tumor cells, the results are unsatisfactory. Targeting therapy has shown potential due to its specificity and efficiency. Meanwhile, it has been revealed that cancer stem cells (CSCs) play a crucial role in the genesis, development, metastasis and recurrence of tumors. Thus, it is feasible to inhibit tumors and improve prognosis via targeting CSCs. In this review, we provide a comprehensive understanding of the biological characteristics of CSCs, including mitotic pattern, metabolic phenotype, therapeutic resistance and related mechanisms. Finally, we summarize CSCs targeted strategies, including targeting CSCs surface markers, targeting CSCs related signal pathways, targeting CSC niches, targeting CSC metabolic pathways, inducing differentiation therapy and immunotherapy (tumor vaccine, CAR-T, oncolytic virus, targeting CSCs–immune cell crosstalk and immunity checkpoint inhibitor). We highlight the potential of immunity therapy and its combinational anti-CSC therapies, which are composed of different drugs working in different mechanisms.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Jiajun Xie ◽  
Zifeng Wang ◽  
Wenjun Fan ◽  
Youping Liu ◽  
Fang Liu ◽  
...  

AbstractApplication of differentiation therapy targeting cellular plasticity for the treatment of solid malignancies has been lagging. Nasopharyngeal carcinoma (NPC) is a distinctive cancer with poor differentiation and high prevalence of Epstein-Barr virus (EBV) infection. Here, we show that the expression of EBV latent protein LMP1 induces dedifferentiated and stem-like status with high plasticity through the transcriptional inhibition of CEBPA. Mechanistically, LMP1 upregulates STAT5A and recruits HDAC1/2 to the CEBPA locus to reduce its histone acetylation. HDAC inhibition restored CEBPA expression, reversing cellular dedifferentiation and stem-like status in mouse xenograft models. These findings provide a novel mechanistic epigenetic-based insight into virus-induced cellular plasticity and propose a promising concept of differentiation therapy in solid tumor by using HDAC inhibitors to target cellular plasticity.


Biomolecules ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 907
Author(s):  
Svetlana Novikova ◽  
Olga Tikhonova ◽  
Leonid Kurbatov ◽  
Tatiana Farafonova ◽  
Igor Vakhrushev ◽  
...  

Induced granulocytic differentiation of human leukemic cells under all-trans-retinoid acid (ATRA) treatment underlies differentiation therapy of acute myeloid leukemia. Knowing the regulation of this process it is possible to identify potential targets for antileukemic drugs and develop novel approaches to differentiation therapy. In this study, we have performed transcriptomic and proteomic profiling to reveal up- and down-regulated transcripts and proteins during time-course experiments. Using data on differentially expressed transcripts and proteins we have applied upstream regulator search and obtained transcriptome- and proteome-based regulatory networks of induced granulocytic differentiation that cover both up-regulated (HIC1, NFKBIA, and CASP9) and down-regulated (PARP1, VDR, and RXRA) elements. To verify the designed network we measured HIC1 and PARP1 protein abundance during granulocytic differentiation by selected reaction monitoring (SRM) using stable isotopically labeled peptide standards. We also revealed that transcription factor CEBPB and LYN kinase were involved in differentiation onset, and evaluated their protein levels by SRM technique. Obtained results indicate that the omics data reflect involvement of the DNA repair system and the MAPK kinase cascade as well as show the balance between the processes of the cell survival and apoptosis in a p53-independent manner. The differentially expressed transcripts and proteins, predicted transcriptional factors, and key molecules such as HIC1, CEBPB, LYN, and PARP1 may be considered as potential targets for differentiation therapy of acute myeloid leukemia.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yasaman KalantarMotamedi ◽  
Fatemeh Ejeian ◽  
Faezeh Sabouhi ◽  
Leila Bahmani ◽  
Alireza Shoaraye Nejati ◽  
...  

AbstractDifferentiation therapy is attracting increasing interest in cancer as it can be more specific than conventional chemotherapy approaches, and it has offered new treatment options for some cancer types, such as treating acute promyelocytic leukaemia (APL) by retinoic acid. However, there is a pressing need to identify additional molecules which act in this way, both in leukaemia and other cancer types. In this work, we hence developed a novel transcriptional drug repositioning approach, based on both bioinformatics and cheminformatics components, that enables selecting such compounds in a more informed manner. We have validated the approach for leukaemia cells, and retrospectively retinoic acid was successfully identified using our method. Prospectively, the anti-parasitic compound fenbendazole was tested in leukaemia cells, and we were able to show that it can induce the differentiation of leukaemia cells to granulocytes in low concentrations of 0.1 μM and within as short a time period as 3 days. This work hence provides a systematic and validated approach for identifying small molecules for differentiation therapy in cancer.


Sign in / Sign up

Export Citation Format

Share Document