scholarly journals Addition to “Assessment of Constant-Potential Implicit Solvation Calculations of Electrochemical Energy Barriers for H2 Evolution on Pt”

2019 ◽  
Vol 123 (25) ◽  
pp. 15875-15875 ◽  
Author(s):  
Maxime Van den Bossche ◽  
Egill Skúlason ◽  
Christoph Rose-Petruck ◽  
Hannes Jónsson

2019 ◽  
Vol 123 (7) ◽  
pp. 4116-4124 ◽  
Author(s):  
Maxime Van den Bossche ◽  
Egill Skúlason ◽  
Christoph Rose-Petruck ◽  
Hannes Jónsson


2018 ◽  
Author(s):  
Maxime Van den Bossche ◽  
Egill Skúlason ◽  
Christoph Rose-Petruck ◽  
Hannes Jonsson

Theoretical estimation of the activation energy of electrochemical reactions is of critical importance but remains challenging. In this work, we address the usage of an implicit solvation model for describing hydrogen evolution reaction steps on Pt(111) and Pt(110), and compare with the `extrapolation' approach as well as single-crystal measurements. We find that both methods yield qualitatively similar results, which are in fair agreement with the experimental data. Care should be taken, however, in addressing spurious electrostatic interactions between periodically repeated slabs in the VASPsol implementation. Considering the lower computational cost and higher flexibility of the implicit solvation approach, we expect this method to become a valuable tool in electrocatalysis.<br>



2018 ◽  
Author(s):  
Maxime Van den Bossche ◽  
Egill Skúlason ◽  
Christoph Rose-Petruck ◽  
Hannes Jonsson

Theoretical estimation of the activation energy of electrochemical reactions is of critical importance but remains challenging. In this work, we address the usage of an implicit solvation model for describing hydrogen evolution reaction steps on Pt(111) and Pt(110), and compare with the `extrapolation' approach as well as single-crystal measurements. We find that both methods yield qualitatively similar results, which are in fair agreement with the experimental data. Care should be taken, however, in addressing spurious electrostatic interactions between periodically repeated slabs in the VASPsol implementation. Considering the lower computational cost and higher flexibility of the implicit solvation approach, we expect this method to become a valuable tool in electrocatalysis.<br>



2018 ◽  
Author(s):  
Maxime Van den Bossche ◽  
Egill Skúlason ◽  
Christoph Rose-Petruck ◽  
Hannes Jonsson

Theoretical estimation of the activation energy of electrochemical reactions is of critical importance but remains challenging. In this work, we address the usage of an implicit solvation model for describing hydrogen evolution reaction steps on Pt(111) and Pt(110), and compare with the `extrapolation' approach and co-workers as well as single-crystal measurements. We find that both methods yield qualitatively similar results, which are in fair agreement with the experimental data. Care should be taken, however, in addressing spurious electrostatic interactions between periodically repeated slabs in the VASPsol implementation. Considering the lower computational cost and higher flexibility of the implicit solvation approach, we expect this method to become a valuable tool in electrocatalysis.<br>



10.2741/3104 ◽  
2008 ◽  
Vol Volume (13) ◽  
pp. 5614 ◽  
Author(s):  
Mookyung Cheon
Keyword(s):  


2018 ◽  
Vol 68 (12) ◽  
pp. 2799-2803
Author(s):  
Maria Daniela Pop ◽  
Oana Brincoveanu ◽  
Mihaela Cristea ◽  
George Octavian Buica ◽  
Marius Enachescu ◽  
...  

Preparation and microscopy characterization of polymer modified glassy carbon electrodes based on (5-[(azulen-1-yl) methylene]-2-thioxothiazolidin-4-one (L) were reported. Atomic Force Microscopy was used to investigate the morphological and mechanical properties of the deposited polyL films onto glassy carbon. The topography images of the analyzed samples exhibited the presence of some columnar shape features onto the layer surfaces. The surface roughness of the layers deposited at constant charge calculated from topography images, increased with the more positive applied potential for controlled potential electrolysis. At different charges, the roughness parameter showed the same behavior for the layers obtained applying a constant potential without having a noticeable influence on the adhesion properties on the substrate. Analysis using scanning electron microscopy shows a relatively uniform surface arrangement of the polymer and the presence of some clusters which are disturbing the planarity. PolyL chemically modified electrodes have been used for heavy metal ions detection with best results for lead.



1986 ◽  
Vol 51 (3) ◽  
pp. 636-642
Author(s):  
Michal Németh ◽  
Ján Mocák

A highly efficient coulometric cell was designed and constructed, ensuring a constant potential over the whole surface of the working electrode and suitable for very rapid electrolysis. It consists of concentric cylindrical Teflon parts; also the working and auxiliary electrodes are cylindrical and concentric. Electrolysis can be carried out under anaerobic conditions. Functioning of the cell was tested on the oxidation of hexacyanoferrate(II) and chlorpromazine and reduction of hexacyanoferrate(III). The new cell is suitable for routine quantitative analyses and in studying the mechanism and kinetics of moderately rapid chemical reactions.



1993 ◽  
Vol 58 (3) ◽  
pp. 496-505
Author(s):  
Ondřej Wein

Partial blocking of the transport surface under the stagnant (nerst) layer is simulated by periodically alternating bands of perfectly insulating zones and active zones with a constant potential of driving force. The numeric solution of the corresponding two-dimensional elliptic problem is represented by a simple empirical correlation for the transfer coefficients. The result is interpreted in terms of a simple electrochemical problem about limiting diffusion currents at electrodes with non-uniform surface activity.



Sign in / Sign up

Export Citation Format

Share Document