Effects of High and Low Salt Concentrations in Electrolytes at Lithium–Metal Anode Surfaces Using DFT-ReaxFF Hybrid Molecular Dynamics Method

Author(s):  
Yue Liu ◽  
Qintao Sun ◽  
Peiping Yu ◽  
Yu Wu ◽  
Liang Xu ◽  
...  
2016 ◽  
Vol 121 (1) ◽  
pp. 182-194 ◽  
Author(s):  
Luis E. Camacho-Forero ◽  
Taylor W. Smith ◽  
Perla B. Balbuena

2000 ◽  
Vol 20 (1Supplement) ◽  
pp. 43-46
Author(s):  
Ken-ichi SAITOH ◽  
Takashi DOI ◽  
Masao KOMAYA ◽  
Takehiko INABA

Small Methods ◽  
2021 ◽  
pp. 2001035
Author(s):  
Zhiyuan Han ◽  
Chen Zhang ◽  
Qiaowei Lin ◽  
Yunbo Zhang ◽  
Yaqian Deng ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Wei Guo ◽  
Wanying Zhang ◽  
Yubing Si ◽  
Donghai Wang ◽  
Yongzhu Fu ◽  
...  

AbstractThe interfacial instability of the lithium-metal anode and shuttling of lithium polysulfides in lithium-sulfur (Li-S) batteries hinder the commercial application. Herein, we report a bifunctional electrolyte additive, i.e., 1,3,5-benzenetrithiol (BTT), which is used to construct solid-electrolyte interfaces (SEIs) on both electrodes from in situ organothiol transformation. BTT reacts with lithium metal to form lithium 1,3,5-benzenetrithiolate depositing on the anode surface, enabling reversible lithium deposition/stripping. BTT also reacts with sulfur to form an oligomer/polymer SEI covering the cathode surface, reducing the dissolution and shuttling of lithium polysulfides. The Li–S cell with BTT delivers a specific discharge capacity of 1,239 mAh g−1 (based on sulfur), and high cycling stability of over 300 cycles at 1C rate. A Li–S pouch cell with BTT is also evaluated to prove the concept. This study constructs an ingenious interface reaction based on bond chemistry, aiming to solve the inherent problems of Li–S batteries.


Sign in / Sign up

Export Citation Format

Share Document