θ-Solvent-Mediated Double-Shell Polyethylene Glycol Brushes on Nanoparticles for Improved Stealth Properties and Delivery Efficiency

Author(s):  
Yao Xue ◽  
Shuhan Liu ◽  
Zixin An ◽  
Jia-Xuan Li ◽  
Ning-Ning Zhang ◽  
...  
2019 ◽  
Vol 15 (12) ◽  
pp. 2413-2427
Author(s):  
Xiaoying Liu ◽  
Shukun Tang ◽  
Yuncui Liu ◽  
Dandan Hu ◽  
Changmei Zhang ◽  
...  

With aging of population, changing of living habits, and intake of high-fat diet, more and more people have been suffering from cardio-cerebral apoplexy. The synchronous treatment of cardio-cerebral conditions based on an integral strategy may bring benefit to the better clinical efficacy. The simultaneously-targeting delivery of active molecules by nanoscale carriers to heart and brain remains unmet problem. The physiological difference of targets between heart and brain makes it a huge challenge which one targeting ligand modification acquires the delivery of two organs and treatment, simultaneously. Traditionally, dually targeting strategies are introduced to enhance the selectivity for one aimed tissue and delivery efficiency of these particles. However, the interference between two targeting ligands on the surface of nanoscale carriers may influence the affinity of these ligands with their receptors or transporters, resulting to the change distribution of carriers. Herein, we observed that how anti-cardiac troponin I (cTnI) antibody (Ab) conjugated with the linker, polyethylene glycol (PEG), on the surface of liposomes influenced the affinity of mannose derivatives with transporter and regulated distribution of these vesicles in the heart and brain. The dually targeting liposomes can target to the heart and brain tissue simultaneously by the regulation length of PEG chain linking with p -pentanoic acid phenyl-α-D-acetylmannosamine (Ac4MAN). These results may bring benefit to design the multi-modification of nanocarriers and the treatment of cardio-cerebral diseases.


Author(s):  
Kuixiong Gao ◽  
Randal E. Morris ◽  
Bruce F. Giffin ◽  
Robert R. Cardell

Several enzymes are involved in the regulation of anabolic and catabolic pathways of carbohydrate metabolism in liver parenchymal cells. The lobular distribution of glycogen synthase (GS), phosphoenolpyruvate carboxykinase (PEPCK) and glycogen phosphorylase (GP) was studied by immunocytochemistry using cryosections of normal fed and fasted rat liver. Since sections of tissue embedded in polyethylene glycol (PEG) show good morphological preservation and increased detectability for immunocytochemical localization of antigenic sites, and semithin sections of Visio-Bond (VB) embedded tissue provide higher resolution of cellular structure, we applied these techniques and immunogold-silver stain (IGSS) for a more accurate localization of hepatic carbohydrate metabolic enzymes.


Author(s):  
Dai Dalin ◽  
Guo Jianmin

Lipid cytochemistry has not yet advanced far at the EM level. A major problem has been the loss of lipid during dehydration and embedding. Although the adoption of glutaraldehyde and osmium tetroxide accelerate the chemical reaction of lipid and osmium tetroxide can react on the double bouds of unsaturated lipid to from the osmium black, osmium tetroxide can be reduced in saturated lipid and subsequently some of unsaturated lipid are lost during dehydration. In order to reduce the loss of lipid by traditional method, some researchers adopted a few new methods, such as the change of embedding procedure and the adoption of new embedding media, to solve the problem. In a sense, these new methods are effective. They, however, usually require a long period of preparation. In this paper, we do research on the fiora nectary strucure of lauraceae by the rapid-embedding method wwith PEG under electron microscope and attempt to find a better method to solve the problem mentioned above.


1992 ◽  
Vol 85 (2) ◽  
pp. 345-351 ◽  
Author(s):  
Gokarna B. Gharti-Chhetri ◽  
Wichai Cherdshewasart ◽  
Jocelyne Dewulf ◽  
Michel Jacobs ◽  
loan Negrutiu

2018 ◽  
Author(s):  
A Elmekkaoui ◽  
M Oualgouh ◽  
A Zazour ◽  
W Khannoussi ◽  
G Kharrasse ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document