Mechanism of Adhesion of Natural Polymer Coatings to Chemically Modified Siloxane Polymer

Langmuir ◽  
2021 ◽  
Vol 37 (9) ◽  
pp. 2974-2984
Author(s):  
Emmanuel Joseph ◽  
Shatruhan Singh Rajput ◽  
Shivprasad Patil ◽  
Anuya Nisal
2010 ◽  
Vol 95 (12) ◽  
pp. 2309-2317 ◽  
Author(s):  
Xiaoqing Zhang ◽  
Yesim Gozukara ◽  
Parveen Sangwan ◽  
Dachao Gao ◽  
Stuart Bateman

2016 ◽  
Vol 104 (10) ◽  
pp. 2628-2641 ◽  
Author(s):  
Svenja Heise ◽  
Sannakaisa Virtanen ◽  
Aldo R. Boccaccini

2018 ◽  
Vol 9 (4) ◽  
pp. 12-27
Author(s):  
Evgeny V. Zinovyev ◽  
Vladimir E. Yudin ◽  
Marat S. Asadulaev ◽  
Vasiliy N. Tsygan ◽  
Denis V. Kostyakov ◽  
...  

The results of three-year research on the use of allogeneic mesenchymal stem cells of adipose tissue (AMSCs) in the treatment of skin burns of II-III degree are presented. in a complex with wounds dressing of nanofibers chitosan and copolyamide, hyaluronic acid. It was found that with surgical necrectomy, introduction of AMSCs and substitution of defects with natural polymer coatings, the healing time is reduced by 89% (p < 0.05). Isolated administration of MSC reduces the healing period by no more than 5% (p > 0.05). The combined use of wounds dressings of nanofibers chitosan and copo lyamide with MSC accelerates the regeneration process by 26% (p < 0.05), with the introduction of AMSCs accelerating the development of granulation tissue by the fifth day of observation by 83% (p < 0.01). Joint use of wound coverings on the basis of hyaluronic acid with AMSCs is accompanied by an increase in the number of vessels of the microcirculatory bed in the defect area by 185% (p < 0.01). Clinical evaluation of the effectiveness of drugs with stem cells – a gel for topical application and a suspension of MSC LC for injection administration demonstrate their ability to optimize regeneration in the burn zone. Application of gel with AMSCs reduces the duration of epithelialization of border (dermal) burns by 2.2-2.4 times, with the final healing period being reduced by 59% (p < 0.01) and the suppuration frequency by 30% (p < 0.05). The introduction of a suspension of AMSCs into the zone of deep burn increases the frequency of engraftment of autografts, stimulates angiogenesis and proliferation of fibroblasts in the superficial and deep layers of the dermis. In the area of MSC administration, the LC perfusion level and the amplitude of blood flow fluctuation are twice as high as the values in the zones without the introduction of cells.


1989 ◽  
Vol 61 (01) ◽  
pp. 131-136 ◽  
Author(s):  
Richard A Harvey ◽  
Hugh C Kim ◽  
Jonathan Pincus ◽  
Stanley Z Trooskin ◽  
Josiah N Wilcox ◽  
...  

SummaryTissue plasminogen activator labeled with radioactive iodine (125I-tPA) was immobilized on vascular prostheses chemically modified with a thin coating of water-insoluble surfactant, tridodecylmethylammonium chloride (TDM AC). Surfactant- treated Dacron, polytetrafluoroethylene (PTFE), silastic, polyethylene and polyurethane bound appreciable amounts of 125I- tPA (5-30 μg 125I-tPA/cm2). Upon exposure to human plasma, the amount of 125I-tPA bound to the surface shows an initial drop during the first hour of incubation, followed by a slower, roughly exponential release with a t½ of appoximately 75 hours. Prostheses containing bound tPA show fibrinolytic activity as measured both by lysis of clots formed in vitro, and by hydrolysis of a synthetic polypeptide substrate. Prior to incubation in plasma, tPA bound to a polymer surface has an enzymic activity similar, if not identical to that of the native enzyme in buffered solution. However, exposure to plasma causes a decrease in the fibrinolytic activity of both bound tPA and enzyme released from the surface of the polymer. These data demonstrate that surfactant-treated prostheses can bind tPA, and that these chemically modified devices can act as a slow-release drug delivery system with the potential for reducing prosthesis-induced thromboembolism.


2012 ◽  
pp. 141208072802005
Author(s):  
Fabiano Ribeiro Cirano ◽  
ADRIANE TOGASHI ◽  
MARCIA MARQUES ◽  
FRANCISCO PUSTIGLIONI ◽  
LUIZ LIMA

Sign in / Sign up

Export Citation Format

Share Document