Interfacial Adsorption and Electron Properties of Water Molecule/Cluster on Anatase TiO2(101) Surface: Raman and DFT Investigation

Langmuir ◽  
2022 ◽  
Author(s):  
Xianze Meng ◽  
Xinran Li ◽  
Qinhao Zhang ◽  
Runchao Zheng ◽  
Liankui Wu ◽  
...  
2007 ◽  
Vol 72 (8) ◽  
pp. 1122-1138 ◽  
Author(s):  
Milan Uhlár ◽  
Ivan Černušák

The complex NO+·H2S, which is assumed to be an intermediate in acid rain formation, exhibits thermodynamic stability of ∆Hº300 = -76 kJ mol-1, or ∆Gº300 = -47 kJ mol-1. Its further transformation via H-transfer is associated with rather high barriers. One of the conceivable routes to lower the energy of the transition state is the action of additional solvent molecule(s) that can mediate proton transfer. We have studied several NO+·H2S structures with one or two additional water molecule(s) and have found stable structures (local minima), intermediates and saddle points for the three-body NO+·H2S·H2O and four-body NO+·H2S·(H2O)2 clusters. The hydrogen bonds network in the four-body cluster plays a crucial role in its conversion to thionitrous acid.


2018 ◽  
Vol 17 (08) ◽  
pp. 1850050 ◽  
Author(s):  
Qiuhan Luo ◽  
Gang Li ◽  
Junping Xiao ◽  
Chunhui Yin ◽  
Yahui He ◽  
...  

Sulfonylureas are an important group of herbicides widely used for a range of weeds and grasses control particularly in cereals. However, some of them tend to persist for years in environments. Hydrolysis is the primary pathway for their degradation. To understand the hydrolysis behavior of sulfonylurea herbicides, the hydrolysis mechanism of metsulfuron-methyl, a typical sulfonylurea, was investigated using density functional theory (DFT) at the B3LYP/6-31[Formula: see text]G(d,p) level. The hydrolysis of metsulfuron-methyl resembles nucleophilic substitution by a water molecule attacking the carbonyl group from aryl side (pathway a) or from heterocycle side (pathway b). In the direct hydrolysis, the carbonyl group is directly attacked by one water molecule to form benzene sulfonamide or heterocyclic amine; the free energy barrier is about 52–58[Formula: see text]kcal[Formula: see text]mol[Formula: see text]. In the autocatalytic hydrolysis, with the second water molecule acting as a catalyst, the free energy barrier, which is about 43–45[Formula: see text]kcal[Formula: see text]mol[Formula: see text], is remarkably reduced by about 11[Formula: see text]kcal[Formula: see text]mol[Formula: see text]. It is obvious that water molecules play a significant catalytic role during the hydrolysis of sulfonylureas.


Author(s):  
Th. Kellersohn ◽  
B. Engelen ◽  
H. D. Lutz ◽  
H. Bartl ◽  
B. P. Schweiss ◽  
...  

AbstractBarium bromide dihydrate, BaBr


Author(s):  
Alex J. Tanner ◽  
Robin Kerr ◽  
Helen H. Fielding ◽  
Geoff Thornton

1994 ◽  
Vol 269 (47) ◽  
pp. 29629-29635
Author(s):  
G N La Mar ◽  
F Dalichow ◽  
X Zhao ◽  
Y Dou ◽  
M Ikeda-Saito ◽  
...  
Keyword(s):  

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Siddhartha Kundu

Abstract Objective Non-haem iron(II)- and 2-oxoglutarate-dependent dioxygenases (i2OGdd), are a taxonomically and functionally diverse group of enzymes. The active site comprises ferrous iron in a hexa-coordinated distorted octahedron with the apoenzyme, 2-oxoglutarate and a displaceable water molecule. Current information on novel i2OGdd members is sparse and relies on computationally-derived annotation schema. The dissimilar amino acid composition and variable active site geometry thereof, results in differing reaction chemistries amongst i2OGdd members. An additional need of researchers is a curated list of sequences with putative i2OGdd function which can be probed further for empirical data. Results This work reports the implementation of $$Fe\left(2\right)OG$$ F e 2 O G , a web server with dual functionality and an extension of previous work on i2OGdd enzymes $$\left(Fe\left(2\right)OG\equiv \{H2OGpred,DB2OG\}\right)$$ F e 2 O G ≡ { H 2 O G p r e d , D B 2 O G } . $$Fe\left(2\right)OG$$ F e 2 O G , in this form is completely revised, updated (URL, scripts, repository) and will strengthen the knowledge base of investigators on i2OGdd biochemistry and function. $$Fe\left(2\right)OG$$ F e 2 O G , utilizes the superior predictive propensity of HMM-profiles of laboratory validated i2OGdd members to predict probable active site geometries in user-defined protein sequences. $$Fe\left(2\right)OG$$ F e 2 O G , also provides researchers with a pre-compiled list of analyzed and searchable i2OGdd-like sequences, many of which may be clinically relevant. $$Fe(2)OG$$ F e ( 2 ) O G , is freely available (http://204.152.217.16/Fe2OG.html) and supersedes all previous versions, i.e., H2OGpred, DB2OG.


Sign in / Sign up

Export Citation Format

Share Document