Anomalous Friction between Agar Gels under Accelerated Motion

Langmuir ◽  
2018 ◽  
Vol 34 (43) ◽  
pp. 12723-12729 ◽  
Author(s):  
Koki Shinomiya ◽  
Hiroyuki Mayama ◽  
Yoshimune Nonomura
Keyword(s):  
Author(s):  
Russell L. Steere ◽  
Eric F. Erbe

Thin sheets of acrylamide and agar gels of different concentrations were prepared and washed in distilled water, cut into pieces of appropriate size to fit into complementary freeze-etch specimen holders (1) and rapidly frozen. Freeze-etching was accomplished in a modified Denton DFE-2 freeze-etch unit on a DV-503 vacuum evaporator.* All samples were etched for 10 min. at -98°C then re-cooled to -150°C for deposition of Pt-C shadow- and C replica-films. Acrylamide gels were dissolved in Chlorox (5.251 sodium hypochlorite) containing 101 sodium hydroxide, whereas agar gels dissolved rapidly in the commonly used chromic acid cleaning solutions. Replicas were picked up on grids with thin Foimvar support films and stereo electron micrographs were obtained with a JEM-100 B electron microscope equipped with a 60° goniometer stage.Characteristic differences between gels of different concentrations (Figs. 1 and 2) were sufficiently pronounced to convince us that the structures observed are real and not the result of freezing artifacts.


2019 ◽  
Vol 20 (4) ◽  
pp. 267-275
Author(s):  
Yury N. Razoumny ◽  
Sergei A. Kupreev

The controlled motion of a body in a central gravitational field without mass flow is considered. The possibility of moving the body in the radial direction from the center of attraction due to changes in the kinetic moment relative to the center of mass of the body is shown. A scheme for moving the body using a system of flywheels located in the same plane in near-circular orbits with different heights is proposed. The use of the spin of elementary particles is considered as flywheels. It is proved that using the spin of elementary particles with a Compton wavelength exceeding the distance to the attracting center is energetically more profitable than using the momentum of these particles to move the body. The calculation of motion using hypothetical particles (gravitons) is presented. A hypothesis has been put forward about the radiation of bodies during accelerated motion, which finds indirect confirmation in stellar dynamics and in an experiment with the fall of two bodies in a vacuum. The results can be used in experiments to search for elementary particles with low energy, explain cosmic phenomena and to develop transport objects on new physical principles.


2007 ◽  
Vol 25 (11) ◽  
pp. 1867-1873 ◽  
Author(s):  
A. B. Bonafonte ◽  
O. Iglesias ◽  
J. L. Bueno

Sign in / Sign up

Export Citation Format

Share Document