scholarly journals Sharing the Load: Stress Redistribution Governs Fracture of Polymer Double Networks

2021 ◽  
Author(s):  
Justin Tauber ◽  
Lorenzo Rovigatti ◽  
Simone Dussi ◽  
Jasper van der Gucht
2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Osman Dogan Yirmibesoglu ◽  
Leif Erik Simonsen ◽  
Robert Manson ◽  
Joseph Davidson ◽  
Katherine Healy ◽  
...  

AbstractDevelopments in additive manufacturing have enabled the fabrication of soft machines that can safely interface with humans, creating new applications in soft robotics, wearable technologies, and haptics. However, designing custom inks for the 3D printing of soft materials with Young’s modulus less than 100 kPa remains a challenge due to highly coupled structure-property-process relationship in polymers. Here, we show a three-stage material chemistry process based on interpenetrating silicone double networks and ammonium bicarbonate particles that decouples the transient behavior during processing from the final properties of the material. Evaporation of ammonium bicarbonate particles at the final stage creates gaseous voids to produce foams with a low effective Young’s modulus in the 25 kPa −90 kPa range. Our photoirradiation-assisted direct ink writing system demonstrates the ability to maintain high resolution while enabling controlled loading of ammonium bicarbonate particles. The resultant multi-material possesses programmed porosity and related properties such as density, stiffness, Shore hardness, and ultimate strength in a monolithic object. Our multi-hardness synthetic hand and self-righting buoyant structure highlight these capabilities.


1995 ◽  
Vol 2 (2) ◽  
pp. S77-S77
Author(s):  
B VANECKSMIT ◽  
E VANDERWALL ◽  
A KUIJPER ◽  
A ZWINDERMAN ◽  
E PAUWELS ◽  
...  

1989 ◽  
Vol 111 (1) ◽  
pp. 99-105 ◽  
Author(s):  
Z. G. Zhu ◽  
G. J. Weng

A multiaxial theory of creep deformation for particle-strengthened metal-matrix composites is derived. This derivation is based on the observation that there are two major sources of creep resistance in such a system. The first, or metallurgical effect, arises from the increased difficulty of dislocation motion in the presence of particles and is accounted for by a size- and concentration dependent constitutive equation for the matrix. The second, or mechanics effect, is due to the continuous transfer of stress from the ductile matrix to the hard particles and the corresponding stress redistribution is also incorporated in the derivation. Both power-law creep and exponential creep in the matrix, each involving the transient as well as the steady state, are considered. The constitutive equations thus derived can provide the development of creep strain of the composite under a combined stress. The multiaxial theory is also simplified to a uniaxial one, whose explicit stress-creep strain-time relations at a given concentration of particles are also given by a first- and second-order approximation. The uniaxial theory is used to predict the creep deformation of an oxide-strengthened cobalt, and the results are in reasonably good agreement with the experiment. Finally, it is demonstrated that a simple metallurgical approach without considering the stress redistribution between the two constituent phases, or a simple mechanics approach without using a modified constitutive equation for the metal matrix, may each underestimate the creep resistance of the composite, and, therefore, it is important that both factors be considered in the formulation of such a theory.


2018 ◽  
Vol 13 (47) ◽  
pp. 221-230 ◽  
Author(s):  
Paolo Ferro ◽  
Filippo Berto ◽  
Franco Bonollo ◽  
Roberto Montanari

Sign in / Sign up

Export Citation Format

Share Document