scholarly journals Correction to A Selection for Assembly Reveals That a Single Amino Acid Mutant of the Bacteriophage MS2 Coat Protein Forms a Smaller Virus-like Particle

Nano Letters ◽  
2016 ◽  
Vol 16 (12) ◽  
pp. 8034-8034 ◽  
Author(s):  
Michael A. Asensio ◽  
Norma M. Morella ◽  
Christopher M. Jakobson ◽  
Emily C. Hartman ◽  
Jeff E. Glasgow ◽  
...  
Nano Letters ◽  
2016 ◽  
Vol 16 (9) ◽  
pp. 5944-5950 ◽  
Author(s):  
Michael A. Asensio ◽  
Norma M. Morella ◽  
Christopher M. Jakobson ◽  
Emily C. Hartman ◽  
Jeff E. Glasgow ◽  
...  

1992 ◽  
Vol 12 (5) ◽  
pp. 2372-2382
Author(s):  
K M Arndt ◽  
S L Ricupero ◽  
D M Eisenmann ◽  
F Winston

A mutation in the gene that encodes Saccharomyces cerevisiae TFIID (SPT15), which was isolated in a selection for mutations that alter transcription in vivo, changes a single amino acid in a highly conserved region of the second direct repeat in TFIID. Among eight independent spt15 mutations, seven cause this same amino acid change, Leu-205 to Phe. The mutant TFIID protein (L205F) binds with greater affinity than that of wild-type TFIID to at least two nonconsensus TATA sites in vitro, showing that the mutant protein has altered DNA binding specificity. Site-directed mutations that change Leu-205 to five different amino acids cause five different phenotypes, demonstrating the importance of this amino acid in vivo. Virtually identical phenotypes were observed when the same amino acid changes were made at the analogous position, Leu-114, in the first repeat of TFIID. Analysis of these mutations and additional mutations in the most conserved regions of the repeats, in conjunction with our DNA binding results, suggests that these regions of the repeats play equivalent roles in TFIID function, possibly in TATA box recognition.


1995 ◽  
Author(s):  
Yehezkiel Antignus ◽  
Ernest Hiebert ◽  
Shlomo Cohen ◽  
Susan Webb

The DNA of tomato yellow leaf curl virus (TYLCB) was detected in its whitefly vector, Bemisia tabaci, by dot spot hybridization as early as 1 h after acquisition access. The retention of the virus nucleic acid in the vector was at least 23 days after a 48 h acquisition access. However, the retention of TYLCV coat protein did not exceed 10 days. No replicative forms of TYLCV could be detected in B. tabaci, indicating a non-propagative relationship with the vector. Whiteflies were not able to accumulate naked virion ssDNA, virus cloned dsDNA, or virions with impaired coat protein. Deletion, frameshift, and single amino acid mutations were inserted into open reading frames (ORFs) V1 and V2 (Coat protein) of TYLCV. The ability of these mutants to replicate, to spread and to induce symptoms was tested both in leaf disks and in intact plants. No replication was found in tissues that were infected with a deletion mutant that lacked the carboxy half of the coat protein gene. Residual amounts of ssDNA and dsDNA were detected i tissues infected with a frameshift mutant in which an early termination at the extreme part of the protein. Two other mutants in which a single amino acid was changed in the overlapping part of V1 and V2 were able to spread systemically but infections remained symptomless and the production of ssDNA and dsDNA were significantly lower. These mutants were acquired and transmitted by Bemisia tabaci. Procedures for the the dissection, fixation and embedding of whiteflies were developed. The anatomy and ultrastructure of the salivary gland and the midgut of Bemisia tabaci and Trialeurodes vaporariorum (a vector and non-vector of geminiviruses respectively) was studied and described. Monoclonal antibodies against bean golden mosaic virus (BGMV) with narrow and broad spectrum were prepared. Transmission studies of tomato mottle geminivirus (TMoV) by B. tabaci were carried out. These studies were essential for a further work aimed to understand the interaction of geminiviruses with the insect and their localization in its tissues. To enable the production of transgenic plants procedures were developed for tomato transformation with both Agrobacterium and microparticle bombardment.


Biochemistry ◽  
1995 ◽  
Vol 34 (4) ◽  
pp. 1120-1126 ◽  
Author(s):  
Debora Foguel ◽  
Carolyn M. Teschke ◽  
Peter E. Jr. Prevelige ◽  
Jerson L. Silva

1992 ◽  
Vol 12 (5) ◽  
pp. 2372-2382 ◽  
Author(s):  
K M Arndt ◽  
S L Ricupero ◽  
D M Eisenmann ◽  
F Winston

A mutation in the gene that encodes Saccharomyces cerevisiae TFIID (SPT15), which was isolated in a selection for mutations that alter transcription in vivo, changes a single amino acid in a highly conserved region of the second direct repeat in TFIID. Among eight independent spt15 mutations, seven cause this same amino acid change, Leu-205 to Phe. The mutant TFIID protein (L205F) binds with greater affinity than that of wild-type TFIID to at least two nonconsensus TATA sites in vitro, showing that the mutant protein has altered DNA binding specificity. Site-directed mutations that change Leu-205 to five different amino acids cause five different phenotypes, demonstrating the importance of this amino acid in vivo. Virtually identical phenotypes were observed when the same amino acid changes were made at the analogous position, Leu-114, in the first repeat of TFIID. Analysis of these mutations and additional mutations in the most conserved regions of the repeats, in conjunction with our DNA binding results, suggests that these regions of the repeats play equivalent roles in TFIID function, possibly in TATA box recognition.


Sign in / Sign up

Export Citation Format

Share Document