scholarly journals A single amino acid in coat protein of Pepper mild mottle virus determines its subcellular localization and the chlorosis symptom on leaves of pepper

2020 ◽  
Vol 101 (5) ◽  
pp. 565-570
Author(s):  
Kelei Han ◽  
Hongying Zheng ◽  
Mengfei Ji ◽  
Weijun Cui ◽  
Shuzhen Hu ◽  
...  
2002 ◽  
Vol 68 (2) ◽  
pp. 155-162 ◽  
Author(s):  
Hiroyuki HAMADA ◽  
Shigeharu TAKEUCHI ◽  
Akinori KIBA ◽  
Shinya TSUDA ◽  
Yasufumi HIKICHI ◽  
...  

Virus Genes ◽  
2006 ◽  
Vol 34 (2) ◽  
pp. 205-214 ◽  
Author(s):  
Hiroyuki Hamada ◽  
Reiko Tomita ◽  
Yasuya Iwadate ◽  
Kappei Kobayashi ◽  
Ikuko Munemura ◽  
...  

2007 ◽  
Vol 97 (7) ◽  
pp. 787-793 ◽  
Author(s):  
Yoshikatsu Genda ◽  
Ayami Kanda ◽  
Hiroyuki Hamada ◽  
Kyoko Sato ◽  
Jun Ohnishi ◽  
...  

The Capsicum spp. L genes (L1 to L4) confer resistance to tobamoviruses. Currently, the L4 gene from Capsicum chacoense is the most effective resistance gene and has been used widely in breeding programs in Japan which have developed new resistant cultivars against Pepper mild mottle virus (PMMoV). However, in 2004, mild mosaic symptoms began appearing on the leaves of commercial pepper plants in the field which possessed the L4 resistance gene. Serological and biological assays on Capsicum spp. identified the causal virus strain as a previously unreported pathotype, P1,2,3,4. PMMoV sequence analysis of the virus and site-directed mutagenesis using a PMMoV-J of the P1,2 pathotype revealed that two amino acid substitutions in the coat protein, Gln to Arg at position 46 and Gly to Lys at position 85, were responsible for overcoming the L4 resistance gene.


1998 ◽  
Vol 11 (12) ◽  
pp. 1253-1257 ◽  
Author(s):  
P. Gilardi ◽  
I. García-Luque ◽  
M. T. Serra

The pepper mild mottle virus (PMMoV-S) (an L3 hypersensitive response [HR]-inducer strain) coat protein was expressed in Capsicum chinense (L3L3) plants with the heterologous potato virus X (PVX)-based expression system. The chimeric virus was localized in the inoculated leaves and induced the HR, thus indicating that the tobamoviral sequences that affect induction of the HR conferred by the L3 resistance gene reside in the coat protein gene. Furthermore, transient expression of the PMMoV-S coat protein in C. chinense leaves by biolistic co-bombardment with a plasmid expressing the β-glucuronidase (GUS) gene leads to the induction of cell death and expression of host defense genes. Thus, the coat protein of PMMoV-S is the elicitor of the Capsicum spp. L3 resistance gene-mediated HR.


2007 ◽  
Vol 97 (4) ◽  
pp. 412-420 ◽  
Author(s):  
Shinya Tsuda ◽  
Kenji Kubota ◽  
Ayami Kanda ◽  
Takehiro Ohki ◽  
Tetsuo Meshi

Pepper mild mottle virus (PMMoV) infects pepper plants, causing mosaic symptoms on the upper developing leaves. We investigated the relationship between a virus pathogenicity determinant domain and the appearance of mosaic symptoms. Genetically modified PMMoV mutants were constructed, which had a base substitution in the 130K replication protein gene causing an amino acid change or a truncation of the 3′ terminal pseudoknot structure. Only one substitution mutant (at amino acid residue 349) failed to cause symptoms, although its accumulation was relatively high. Conversely, the pseudoknot mutants showed the lower accumulation, but they still caused mosaic symptoms as severe as the wild-type virus. Therefore, the level of virus accumulation in a plant does not necessarily correlate with the development of mosaic symptoms. The activity to suppress posttranscriptional gene silencing (PTGS) was impaired in the asymptomatic mutant. Consequently, pathogenicity causing mosaic symptoms should be controlled by combat between host PTGS and its suppression by the 130K replication protein rather than virus accumulation.


2008 ◽  
Vol 82 (19) ◽  
pp. 9591-9599 ◽  
Author(s):  
Mark D. Stenglein ◽  
Hiroshi Matsuo ◽  
Reuben S. Harris

ABSTRACT APOBEC3G limits the replication of human immunodeficiency virus type 1, other retroviruses, and retrotransposons. It localizes predominantly to the cytoplasm of cells, which is consistent with a model wherein cytosolic APOBEC3G packages into assembling virions, where it exerts its antiviral effect by deaminating viral cDNA cytosines during reverse transcription. To define the domains of APOBEC3G that determine cytoplasmic localization, comparisons were made with APOBEC3B, which is predominantly nuclear. APOBEC3G/APOBEC3B chimeric proteins mapped a primary subcellular localization determinant to a region within the first 60 residues of each protein. A panel of 25 APOBEC3G mutants, each with a residue replaced by the corresponding amino acid of APOBEC3B, revealed that several positions within this region were particularly important, with Y19D showing the largest effect. The mislocalization phenotype of these mutants was only apparent in the context of the amino-terminal half of APOBEC3G and not the full-length protein, suggesting the existence of an additional localization determinant. Indeed, a panel of five single amino acid substitutions within the region from amino acids 113 to 128 had little effect by themselves but, in combination with Y19D, two substitutions—F126S and W127A—caused full-length APOBEC3G to redistribute throughout the cell. The critical localization-determining residues were predicted to cluster on a common solvent-exposed surface, suggesting a model in which these two regions of APOBEC3G combine to mediate an intermolecular interaction that controls subcellular localization.


Sign in / Sign up

Export Citation Format

Share Document