Real-Time Acid Rain Sensor Based on a Triboelectric Nanogenerator Made of a PTFE–PDMS Composite Film

Author(s):  
Haiwei Liu ◽  
Jun Dong ◽  
Hongyu Zhou ◽  
Xiude Yang ◽  
Cunyun Xu ◽  
...  
2017 ◽  
Vol 9 (13) ◽  
pp. 11882-11888 ◽  
Author(s):  
Guang Qin Gu ◽  
Chang Bao Han ◽  
Jing Jing Tian ◽  
Cun Xin Lu ◽  
Chuan He ◽  
...  

Electronics ◽  
2021 ◽  
Vol 10 (19) ◽  
pp. 2322
Author(s):  
Xiaofei Ma ◽  
Xuan Liu ◽  
Xinxing Li ◽  
Yunfei Ma

With the rapid development of the Internet of Things (IoTs), big data analytics has been widely used in the sport field. In this paper, a light-weight, self-powered sensor based on a triboelectric nanogenerator for big data analytics in sports has been demonstrated. The weight of each sensing unit is ~0.4 g. The friction material consists of polyaniline (PANI) and polytetrafluoroethylene (PTFE). Based on the triboelectric nanogenerator (TENG), the device can convert small amounts of mechanical energy into the electrical signal, which contains information about the hitting position and hitting velocity of table tennis balls. By collecting data from daily table tennis training in real time, the personalized training program can be adjusted. A practical application has been exhibited for collecting table tennis information in real time and, according to these data, coaches can develop personalized training for an amateur to enhance the ability of hand control, which can improve their table tennis skills. This work opens up a new direction in intelligent athletic facilities and big data analytics.


2020 ◽  
Vol 12 (34) ◽  
pp. 38192-38201 ◽  
Author(s):  
Lei Yang ◽  
Yunfei Wang ◽  
Zhibin Zhao ◽  
Yanjie Guo ◽  
Sicheng Chen ◽  
...  

2021 ◽  
Author(s):  
Haoran Zhang ◽  
Xubing Wu ◽  
Jiaying Du ◽  
Song Wang ◽  
Hui Fang ◽  
...  

Abstract Responsive composites that can display sophisticated responses under environmental stimuli are of paramount importance for developing smart materials and systems. However, the hierarchical design of their multiscale constituents to achieve such response remains a challenge. Here, we report a responsive polymer composite obtained by integrating hierarchical interactions between the polymer network meshes, perovskite nanoinclusion, and a microstructured layout. More specific, a layered composite film has been made with perovskite nanoparticles embedded in a hydratable polymer network as the top layer. The perovskites inclusions can undergo a reversible transformation between a nanocrystalline state and a dissociated ion state, triggered by spraying aqueous solutions on the polymer top layer, resulting in an on/off switch of fluorescence at 510 nm. Meanwhile, the surface layer experiences a reconfigurable micro-wrinkling that can gradually change the film transmittance between 90% and 10%. The two orthogonal responses show a good reversibility for at least 15 cycles. They can be manipulated independently as they respond differently to the amount of water applied. We demonstrate the use of such film by real-time, quantitative, and repeatable detection of spraying and subsequent droplet distribution. Such a sensing capability is urgently needed in precision agriculture for fast assessing the deposition quality of pesticides and fertilizers, yet still not available. Our findings enable the design of perovskite-based responsive composites with multiple functions as well as novel device applications in sensors, actuators, and optoelectronics.


Nano Energy ◽  
2021 ◽  
Vol 80 ◽  
pp. 105566
Author(s):  
Ammu Anna Mathew ◽  
Arunkumar Chandrasekhar ◽  
S. Vivekanandan

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Liangmin Jin ◽  
Juan Tao ◽  
Rongrong Bao ◽  
Li Sun ◽  
Caofeng Pan

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Ken Qin ◽  
Chen Chen ◽  
Xianjie Pu ◽  
Qian Tang ◽  
Wencong He ◽  
...  

AbstractIn human-machine interaction, robotic hands are useful in many scenarios. To operate robotic hands via gestures instead of handles will greatly improve the convenience and intuition of human-machine interaction. Here, we present a magnetic array assisted sliding triboelectric sensor for achieving a real-time gesture interaction between a human hand and robotic hand. With a finger’s traction movement of flexion or extension, the sensor can induce positive/negative pulse signals. Through counting the pulses in unit time, the degree, speed, and direction of finger motion can be judged in real-time. The magnetic array plays an important role in generating the quantifiable pulses. The designed two parts of magnetic array can transform sliding motion into contact-separation and constrain the sliding pathway, respectively, thus improve the durability, low speed signal amplitude, and stability of the system. This direct quantization approach and optimization of wearable gesture sensor provide a new strategy for achieving a natural, intuitive, and real-time human-robotic interaction.


Sign in / Sign up

Export Citation Format

Share Document