Interfacial Carrier-Transfer Channel Optimization Based on Hydrogen Bonds for High-Performance Organic Solar Cells

Author(s):  
Hao Chen ◽  
Le Liu ◽  
Min Zhao ◽  
Guo-Hao Zhang ◽  
Chengjie Zhao ◽  
...  
2018 ◽  
Vol 6 (36) ◽  
pp. 9691-9702 ◽  
Author(s):  
Xiao Kong ◽  
Hui Lin ◽  
Xiaoyang Du ◽  
Lijuan Li ◽  
Xinrui Li ◽  
...  

We demonstrated that introducing hydrogen bonds is a promising strategy to fabricate high performance and stable organic solar cells.


Author(s):  
Xinrui Li ◽  
Lei Zhou ◽  
Xi Lu ◽  
Luye Cao ◽  
Xiaoyang Du ◽  
...  

We present a novel quaternary OSCs by doping SR197 and PC71BM into a host system (PM6:Y6) to achieve a PCE of up to 17.48%. And the intermolecular hydrogen bonds between materials are formed to directionally modulate the film morphology.


2021 ◽  
pp. 129768
Author(s):  
Dou Luo ◽  
Xue Lai ◽  
Nan Zheng ◽  
Chenghao Duan ◽  
Zhaojin Wang ◽  
...  

2021 ◽  
Vol 60 (16) ◽  
pp. 8813-8817
Author(s):  
Shuting Pang ◽  
Zhiqiang Wang ◽  
Xiyue Yuan ◽  
Langheng Pan ◽  
Wanyuan Deng ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhenrong Jia ◽  
Shucheng Qin ◽  
Lei Meng ◽  
Qing Ma ◽  
Indunil Angunawela ◽  
...  

AbstractTandem organic solar cells are based on the device structure monolithically connecting two solar cells to broaden overall absorption spectrum and utilize the photon energy more efficiently. Herein, we demonstrate a simple strategy of inserting a double bond between the central core and end groups of the small molecule acceptor Y6 to extend its conjugation length and absorption range. As a result, a new narrow bandgap acceptor BTPV-4F was synthesized with an optical bandgap of 1.21 eV. The single-junction devices based on BTPV-4F as acceptor achieved a power conversion efficiency of over 13.4% with a high short-circuit current density of 28.9 mA cm−2. With adopting BTPV-4F as the rear cell acceptor material, the resulting tandem devices reached a high power conversion efficiency of over 16.4% with good photostability. The results indicate that BTPV-4F is an efficient infrared-absorbing narrow bandgap acceptor and has great potential to be applied into tandem organic solar cells.


2021 ◽  
Author(s):  
Lin Lin ◽  
Zeping Huang ◽  
Yuanqi Luo ◽  
Tingen Peng ◽  
Baitian He ◽  
...  

The synthesis and application as a cathode interlayer in organic photovoltaics of a fluorene derivative with pyridyl functional chains are presented.


2021 ◽  
Vol 13 (5) ◽  
pp. 6461-6469
Author(s):  
María Privado ◽  
Fernando G. Guijarro ◽  
Pilar de la Cruz ◽  
Rahul Singhal ◽  
Fernando Langa ◽  
...  

2021 ◽  
pp. 109269
Author(s):  
Xinyue Cui ◽  
Muhammad Bilal Ahmed Qureshi ◽  
Hao Lu ◽  
Hang Wang ◽  
Yahui Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document