Fully Inorganic CsSnI3-Based Solar Cells with >6% Efficiency and Enhanced Stability Enabled by Mixed Electron Transport Layer

Author(s):  
Shaoyang Ma ◽  
Xiaoyu Gu ◽  
Aung KoKo Kyaw ◽  
Dong Hwan Wang ◽  
Shashank Priya ◽  
...  
2017 ◽  
Vol 5 (4) ◽  
pp. 1706-1712 ◽  
Author(s):  
Xin Wang ◽  
Lin-Long Deng ◽  
Lu-Yao Wang ◽  
Si-Min Dai ◽  
Zhou Xing ◽  
...  

Low-temperature, solution-processed cerium oxide can serve as a promising electron transport layer to replace commonly used TiO2 in planar perovskite solar cells, with high efficiency and enhanced stability.


2021 ◽  
Vol 13 (5) ◽  
pp. 6987-6987
Author(s):  
Shaoyang Ma ◽  
Xiaoyu Gu ◽  
Aung Ko Ko Kyaw ◽  
Dong Hwan Wang ◽  
Shashank Priya ◽  
...  

2021 ◽  
Author(s):  
Song Fang ◽  
Bo Chen ◽  
Bangkai Gu ◽  
Linxing Meng ◽  
Hao Lu ◽  
...  

UV induced decomposition of perovskite material is one of main factors to severely destroy perovskite solar cells for instability. Here we report a UV stable perovskite solar cell with a...


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3295
Author(s):  
Andrzej Sławek ◽  
Zbigniew Starowicz ◽  
Marek Lipiński

In recent years, lead halide perovskites have attracted considerable attention from the scientific community due to their exceptional properties and fast-growing enhancement for solar energy harvesting efficiency. One of the fundamental aspects of the architecture of perovskite-based solar cells (PSCs) is the electron transport layer (ETL), which also acts as a barrier for holes. In this work, the influence of compact TiO2 ETL on the performance of planar heterojunction solar cells based on CH3NH3PbI3 perovskite was investigated. ETLs were deposited on fluorine-doped tin oxide (FTO) substrates from a titanium diisopropoxide bis(acetylacetonate) precursor solution using the spin-coating method with changing precursor concentration and centrifugation speed. It was found that the thickness and continuity of ETLs, investigated between 0 and 124 nm, strongly affect the photovoltaic performance of PSCs, in particular short-circuit current density (JSC). Optical and topographic properties of the compact TiO2 layers were investigated as well.


Author(s):  
Zhihai Liu ◽  
Lei Wang ◽  
Chongyang Xu ◽  
Xiaoyin Xie

Recently, Ruddlesden–Popper two-dimensional (2D) perovskite solar cells (PSCs) have been intensively studied, owing to their high power conversion efficiency (PCE) and excellent long-term stability. In this work, we fabricated electron-transport-layer-free...


Author(s):  
Zafar Arshad ◽  
Asif Hussain Khoja ◽  
Sehar Shakir ◽  
Asif Afzal ◽  
M.A. Mujtaba ◽  
...  

2020 ◽  
Vol 64 (4) ◽  
pp. 808-819
Author(s):  
Shenya Qu ◽  
Jiangsheng Yu ◽  
Jinru Cao ◽  
Xin Liu ◽  
Hongtao Wang ◽  
...  

Rare Metals ◽  
2021 ◽  
Author(s):  
Jia-Xing Song ◽  
Xin-Xing Yin ◽  
Zai-Fang Li ◽  
Yao-Wen Li

Abstract As a promising photovoltaic technology, perovskite solar cells (pero-SCs) have developed rapidly over the past few years and the highest power conversion efficiency is beyond 25%. Nowadays, the planar structure is universally popular in pero-SCs due to the simple processing technology and low-temperature preparation. Electron transport layer (ETL) is verified to play a vital role in the device performance of planar pero-SCs. Particularly, the metal oxide (MO) ETL with low-cost, superb versatility, and excellent optoelectronic properties has been widely studied. This review mainly focuses on recent developments in the use of low-temperature-processed MO ETLs for planar pero-SCs. The optical and electronic properties of widely used MO materials of TiO2, ZnO, and SnO2, as well as the optimizations of these MO ETLs are briefly introduced. The commonly used methods for depositing MO ETLs are also discussed. Then, the applications of different MO ETLs on pero-SCs are reviewed. Finally, the challenge and future research of MO-based ETLs toward practical application of efficient planar pero-SCs are proposed. Graphical abstract


Sign in / Sign up

Export Citation Format

Share Document