Plasma-Initiated Graft Polymerization of Acrylic Acid onto Fluorine-Doped Tin Oxide as a Platform for Immobilization of Water-Oxidation Catalysts

Author(s):  
Yosra M. Badiei ◽  
Christian Traba ◽  
Rina Rosales ◽  
Anthony Lopez Rojas ◽  
Claudio Amaya ◽  
...  
ACS Catalysis ◽  
2017 ◽  
Vol 7 (9) ◽  
pp. 6235-6244 ◽  
Author(s):  
Jann Odrobina ◽  
Julius Scholz ◽  
Marcel Risch ◽  
Sebastian Dechert ◽  
Christian Jooss ◽  
...  

2021 ◽  
Vol 60 (3) ◽  
pp. 1806-1813
Author(s):  
Husain N. Kagalwala ◽  
Mahesh S. Deshmukh ◽  
Elamparuthi Ramasamy ◽  
Neelima Nair ◽  
Rongwei Zhou ◽  
...  

Solar RRL ◽  
2021 ◽  
Author(s):  
Matthew V. Sheridan ◽  
Benjamin D. Sherman ◽  
Yi Xie ◽  
Ying Wang

Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 2028
Author(s):  
Shin-ichi Sawada ◽  
Yasunari Maekawa

We prepared novel bipolar membranes (BPMs) consisting of cation and anion exchange layers (CEL and AEL) using radiation-induced asymmetric graft polymerization (RIAGP). In this technique, graft polymers containing cation and anion exchange groups were introduced into a base film from each side. To create a clear CEL/AEL boundary, grafting reactions were performed from each surface side using two graft monomer solutions, which are immiscible in each other. Sodium p-styrenesulfonate (SSS) and acrylic acid (AA) in water were co-grafted from one side of the base ethylene-co-tetrafluoroethylene film, and chloromethyl styrene (CMS) in xylene was simultaneously grafted from the other side, and then the CMS units were quaternized to afford a BPM. The distinct SSS + AA- and CMS-grafted layers were formed owing to the immiscibility of hydrophilic SSS + AA and hydrophobic CMS monomer solutions. This is the first BPM with a clear CEL/AEL boundary prepared by RIAGP. However, in this BPM, the CEL was considerably thinner than the AEL, which may be a problem in practical applications. Then, by using different starting times of the first SSS+AA and second CMS grafting reactions, the CEL and AEL thicknesses was found to be controlled in RIAGP.


Inorganics ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 105 ◽  
Author(s):  
Laurent Sévery ◽  
Sebastian Siol ◽  
S. Tilley

Anchored molecular catalysts provide a good step towards bridging the gap between homogeneous and heterogeneous catalysis. However, applications in an aqueous environment pose a serious challenge to anchoring groups in terms of stability. Ultrathin overlayers embedding these catalysts on the surface using atomic layer deposition (ALD) are an elegant solution to tackle the anchoring group instability. The propensity of ALD precursors to react with water leads to the question whether molecules containing aqua ligands, such as most water oxidation complexes, can be protected without side reactions and deactivation during the deposition process. We synthesized two iridium and two ruthenium-based water oxidation catalysts, which contained an aqua ligand (Ir–OH2 and Ru–OH2) or a chloride (Ir–Cl and Ru–Cl) that served as a protecting group for the former. Using a ligand exchange reaction on the anchored and partially embedded Ru–Cl, the optimal overlayer thickness was determined to be 1.6 nm. An electrochemical test of the protected catalysts on meso-ITO showed different behaviors for the Ru and the Ir catalysts. The former showed no onset difference between protected and non-protected versions, but limited stability. Ir–Cl displayed excellent stability, whilst the unprotected catalyst Ir–OH2 showed a later initial onset. Self-regeneration of the catalytic activity of Ir–OH2 under operating conditions was observed. We propose chloride ligands as generally applicable protecting groups for catalysts that are to be stabilized on surfaces using ALD.


2015 ◽  
Vol 10 (10) ◽  
pp. 2228-2233 ◽  
Author(s):  
Biaobiao Zhang ◽  
Xiujuan Wu ◽  
Fei Li ◽  
Fengshou Yu ◽  
Yong Wang ◽  
...  

ChemSusChem ◽  
2014 ◽  
Vol 7 (8) ◽  
pp. 2202-2211 ◽  
Author(s):  
Prashanth W. Menezes ◽  
Arindam Indra ◽  
Patrick Littlewood ◽  
Michael Schwarze ◽  
Caren Göbel ◽  
...  

2014 ◽  
Vol 4 (1) ◽  
pp. 190-199 ◽  
Author(s):  
Joan Aguiló ◽  
Laia Francàs ◽  
Hai Jie Liu ◽  
Roger Bofill ◽  
Jordi García-Antón ◽  
...  

2016 ◽  
Vol 6 (13) ◽  
pp. 5088-5101 ◽  
Author(s):  
Stephan Roeser ◽  
Fernando Bozoglian ◽  
Craig J. Richmond ◽  
Aaron B. League ◽  
Mehmed Z. Ertem ◽  
...  

The influence of electronic effects over Ru–bpp water oxidation catalysts.


Sign in / Sign up

Export Citation Format

Share Document