High-Performance Organic Solar Cells Featuring Double Bulk Heterojunction Structures with Vertical-Gradient Selenium Heterocyclic Nonfullerene Acceptor Concentrations

Author(s):  
Hao-Wen Cheng ◽  
Anisha Mohapatra ◽  
Yi-Ming Chang ◽  
Chuang-Yi Liao ◽  
Yu-Tang Hsiao ◽  
...  
2021 ◽  
pp. 109269
Author(s):  
Xinyue Cui ◽  
Muhammad Bilal Ahmed Qureshi ◽  
Hao Lu ◽  
Hang Wang ◽  
Yahui Liu ◽  
...  

2018 ◽  
Vol 6 (30) ◽  
pp. 14675-14680 ◽  
Author(s):  
Xuan Zhou ◽  
Wei Tang ◽  
Pengqing Bi ◽  
Lei Yan ◽  
Xingzhu Wang ◽  
...  

Supramolecular self-assembly of a porphyrin donor with J-aggregates affords higher performance with a PC71BM acceptor in bulk heterojunction organic solar cells.


2016 ◽  
Vol 8 (10) ◽  
pp. 6309-6314 ◽  
Author(s):  
Jurgen Kesters ◽  
Sanne Govaerts ◽  
Geert Pirotte ◽  
Jeroen Drijkoningen ◽  
Michèle Chevrier ◽  
...  

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Ruimin Zhou ◽  
Zhaoyan Jiang ◽  
Chen Yang ◽  
Jianwei Yu ◽  
Jirui Feng ◽  
...  

AbstractThe high efficiency all-small-molecule organic solar cells (OSCs) normally require optimized morphology in their bulk heterojunction active layers. Herein, a small-molecule donor is designed and synthesized, and single-crystal structural analyses reveal its explicit molecular planarity and compact intermolecular packing. A promising narrow bandgap small-molecule with absorption edge of more than 930 nm along with our home-designed small molecule is selected as electron acceptors. To the best of our knowledge, the binary all-small-molecule OSCs achieve the highest efficiency of 14.34% by optimizing their hierarchical morphologies, in which the donor or acceptor rich domains with size up to ca. 70 nm, and the donor crystals of tens of nanometers, together with the donor-acceptor blending, are proved coexisting in the hierarchical large domain. All-small-molecule photovoltaic system shows its promising for high performance OSCs, and our study is likely to lead to insights in relations between bulk heterojunction structure and photovoltaic performance.


2019 ◽  
Vol 01 (01) ◽  
pp. 030-037 ◽  
Author(s):  
Jianyun Zhang ◽  
Wenrui Liu ◽  
Shengjie Xu ◽  
Xiaozhang Zhu

Recently, by elaborately designing nonfullerene acceptors and selecting suitable polymer donors great progresses have been made towards binary organic solar cells (OSCs) with power conversion efficiencies (PCEs) over 15%. Ternary organic photovoltaics by introducing a third component into the host binary system is recognized to be highly effective to elevate the performance through extending the light absorption, manipulating the recombination behavior of the carriers, and improving the morphology of the active layer. In this work, we synthesized a new electron-acceptor ZITI-4F matching it with the wide-bandgap polymer donor PBDB-T The PBDB-T:ZITI-4F-based OSC showed a high PCE of 12.33%. After introducing 40% of PC71BM as the third component, the ternary device achieved an improved PCE of 13.40% with simultaneously improved photovoltaic parameters. The higher performance of the ternary device can be attributed to the improved and more balanced charge mobility, reduced bimolecular recombination, and more favorable morphology. These results indicate that the cooperation of a fullerene-based acceptor and a nonfullerene acceptor to fabricate ternary OSCs is an effective approach to optimizing morphology and therefore to increase the performance of OSCs.


2018 ◽  
Vol 5 (6) ◽  
pp. 1800307 ◽  
Author(s):  
Huan-Huan Gao ◽  
Yanna Sun ◽  
Xiangjian Wan ◽  
Xin Ke ◽  
Huanran Feng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document