voltage loss
Recently Published Documents


TOTAL DOCUMENTS

215
(FIVE YEARS 113)

H-INDEX

21
(FIVE YEARS 12)

2022 ◽  
Vol 334 ◽  
pp. 06010
Author(s):  
Elena Colombo ◽  
Andrea Baricci ◽  
Andrea Casalegno

This work aims at studying MEA’s ageing under single operational “mode” accelerated stress tests (AST), that were specifically designed to replicate under hydrogen/air feeding the main stressors of realistic operations in the automotive sector. A methodology for developing AST is here presented and preliminary results about the activity included. In particular, low power and high power functioning have been mimicked in a Zero-Gradient hardware, which allows a reliable materials comparison. Quantities, measurable in-situ and operando, have been tracked during ageing, like cell power, polarization curves, Pt active area, oxygen mass transport resistance, Electrochemical Impedance Spectra. The final objective is to clarify the underlying ageing mechanisms and assess the contribution of each specific operation to the MEA lifetime, focusing in particular on the cathode catalyst layer durability. Moreover, the rate of voltage loss for the new ASTs has been successfully correlated to the degradation observed under a complete driving cycle protocol.


2021 ◽  
Author(s):  
Ying Hu ◽  
Jiaping Wang ◽  
Peng Zhao ◽  
Zhenhua Lin ◽  
Siyu Zhang ◽  
...  

Abstract Due to excellent thermal stability and optoelectronic properties, all-inorganic perovskite is one of the promising candidates to solve the thermal decomposition problem of conventional organic-inorganic hybrid perovskite solar cells (PSCs), but the larger voltage loss (V loss) cannot be ignored, especially CsPbIBr2, which limits the improvement of efficiency. To reduce the V loss, one promising solution is the modification of the energy level alignment between perovskite layer and adjacent charge transport layer (CTL), which can facilitate charge extraction and reduce carrier recombination rate at perovskite/CTL interface. Therefore, the key issues of minimum V loss and high efficiency of CsPbIBr2-based PSCs were studied in terms of the perovskite layer thickness, the effects of band offset of CTL/perovskite layer, the doping concentration of the CTL, and the electrode work function in this study based on device simulations. The open-circuit voltage (V oc) is increased from 1.37 V to 1.52 V by replacing SnO2 with ZnO as electron transport layer (ETL) due to more matching conduction band with CsPbIBr2 layer.


2021 ◽  
Author(s):  
Yimin Liu ◽  
Chuntai Xu ◽  
Xiada Zhu

Abstract A numerical model predicting the moisture distribution under external electric field in unsaturated soils is established. Key parameters including matric potential, hydraulic and electrical permeability coefficient and electric conductivity are discussed. The simulation results are in good agreement with the measured data from literaturea, which verify exactness and suitability of the model. In general, the moisture contents decrease with time under the action of external electric force and matrix suction. A slight increase in moisture contert was observed in the anodic area at the beginning of the treatment. The electro-osmosis treatment effect can be enhanced by improving the voltage gradient or weaken the voltage loss at electrode. The limit value of electroosmosis treatment in moisture content is observed and the method can only be applied on the soil with moisture content higher than the limit value.


2021 ◽  
Vol 1 (2) ◽  
Author(s):  
Nhu Y DO ◽  
Xuan Cuong NGO

Mine drainage pump is the most important load in mining which requires high reliabilitywhen operating. Currently, the power supply of a mine drainage pump is connected to the same powerline with many nonlinear loads, and is equipped with power electronic converters, which makes thepower supply nonsinusoidal. During the working process of a mine drainage pump, the load-carryingfactor often changes, and many types of failures occur, among which single-phase voltage loss is themost common problem. In the case of a nonsinusoidal power supply, if a single-phase voltage lossoccurs in different load modes, it will greatly affect the working mode of the mine drainage pumpleading to influences on the working efficiency, the life of the pump, and sometimes it is necessary torecalculate the protection parameters. This paper studies the influence of single-phase voltage loss andload carrying mode on the working mode of mine drainage pump motor in case the of nonsinusoidalpower supply. Research results show that, in the case of nonsinusoidal power supplied with single-phasevoltage loss, copper losses in the rotor and stator circuits increase with increases in voltage totalharmonic distortion (THD) and load-carrying factor, 5th order reverse harmonic increases copper loss inasynchronous motor the most, and higher harmonic components have less effect on copper loss in themotor. At the same time, the speed ripple decreases with the increase of the motor load factor anddecreases in the presence of the 5th order negative sequence harmonic, and increases significantly in thepresence of the 7th order positive sequence harmonic. 5th order negative sequence harmonic increases,the torque ripple increases, while the 7th order positive sequence harmonic reduces the torque ripple inthe case of single-phase voltage loss. The results of the paper will help improve the operationalefficiency of the mine drainage pump in Vietnam's mines.


Solar Energy ◽  
2021 ◽  
Vol 230 ◽  
pp. 628-634
Author(s):  
Tingyao Huang ◽  
Yiming Bai ◽  
Jun Wang ◽  
Fuzhi Wang ◽  
Meilin Dai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document