Revealing Reactions between the Electron Beam and Nanoparticle Capping Ligands with Correlative Fluorescence and Liquid-Phase Electron Microscopy

Author(s):  
Thilini U. Dissanayake ◽  
Mei Wang ◽  
Taylor J. Woehl
2021 ◽  
Author(s):  
Thilini Umesha Dissanayake ◽  
Mei Wang ◽  
Taylor Woehl

Liquid phase transmission electron microscopy (LP-TEM) enables real-time imaging of nanoparticle self-assembly, formation, and etching with single nanometer resolution. Despite the importance of organic nanoparticle capping ligands in these processes, the effect of electron beam irradiation on surface bound and soluble capping ligands during LP-TEM imaging has not been investigated. Here we use correlative LP-TEM and fluorescence microscopy (FM) to demonstrate that polymeric nanoparticle ligands undergo competing crosslinking and chain scission reactions that non-monotonically modify ligand coverage over time. Branched polyethylenimine (BPEI) coated silver nanoparticles were imaged with dose-controlled LP-TEM followed by labeling their primary amine groups with fluorophores to visualize the local thickness of adsorbed capping ligands. FM images showed that free ligands crosslinked in the LP-TEM image area over imaging times of tens of seconds, enhancing local capping ligand coverage on nanoparticles and silicon nitride membranes. Nanoparticle surface ligands underwent chain scission over irradiation times of minutes to tens of minutes, which depleted surface ligands from the nanoparticle and silicon nitride surface. Conversely, solutions of only soluble capping ligand underwent successive crosslinking reactions with no chain scission, suggesting nanoparticles enhanced the chain scission reactions by acting as radiolysis hotspots. The addition of a hydroxyl radical scavenger, tert-butanol, eliminated chain scission reactions and slowed the progression of crosslinking reactions. These experiments have important implications for performing controlled and reproducible LP-TEM nanoparticle imaging as they demonstrate the electron beam can significantly alter ligand coverage on nanoparticles in a non-intuitive manner. They emphasize the need to understand and control the electron beam radiation chemistry of a given sample to avoid significant perturbations to the nanoparticle capping ligand chemistry, which are invisible in electron micrographs.<br>


2021 ◽  
Author(s):  
Thilini Umesha Dissanayake ◽  
Mei Wang ◽  
Taylor Woehl

Liquid phase transmission electron microscopy (LP-TEM) enables real-time imaging of nanoparticle self-assembly, formation, and etching with single nanometer resolution. Despite the importance of organic nanoparticle capping ligands in these processes, the effect of electron beam irradiation on surface bound and soluble capping ligands during LP-TEM imaging has not been investigated. Here we use correlative LP-TEM and fluorescence microscopy (FM) to demonstrate that polymeric nanoparticle ligands undergo competing crosslinking and chain scission reactions that non-monotonically modify ligand coverage over time. Branched polyethylenimine (BPEI) coated silver nanoparticles were imaged with dose-controlled LP-TEM followed by labeling their primary amine groups with fluorophores to visualize the local thickness of adsorbed capping ligands. FM images showed that free ligands crosslinked in the LP-TEM image area over imaging times of tens of seconds, enhancing local capping ligand coverage on nanoparticles and silicon nitride membranes. Nanoparticle surface ligands underwent chain scission over irradiation times of minutes to tens of minutes, which depleted surface ligands from the nanoparticle and silicon nitride surface. Conversely, solutions of only soluble capping ligand underwent successive crosslinking reactions with no chain scission, suggesting nanoparticles enhanced the chain scission reactions by acting as radiolysis hotspots. The addition of a hydroxyl radical scavenger, tert-butanol, eliminated chain scission reactions and slowed the progression of crosslinking reactions. These experiments have important implications for performing controlled and reproducible LP-TEM nanoparticle imaging as they demonstrate the electron beam can significantly alter ligand coverage on nanoparticles in a non-intuitive manner. They emphasize the need to understand and control the electron beam radiation chemistry of a given sample to avoid significant perturbations to the nanoparticle capping ligand chemistry, which are invisible in electron micrographs.<br>


MRS Bulletin ◽  
2020 ◽  
Vol 45 (9) ◽  
pp. 746-753
Author(s):  
Taylor J. Woehl ◽  
Trevor Moser ◽  
James E. Evans ◽  
Frances M. Ross

Abstract


2021 ◽  
Author(s):  
Birk Fritsch ◽  
Andreas Hutzler ◽  
Mingjian Wu ◽  
Saba Khadivianazar ◽  
Lilian Vogl ◽  
...  

Electron-beam induced heating in the vicinity of a gas bubble in liquid-phase TEM is quantified in situ.


Author(s):  
G. G. Shaw

The morphology and composition of the fiber-matrix interface can best be studied by transmission electron microscopy and electron diffraction. For some composites satisfactory samples can be prepared by electropolishing. For others such as aluminum alloy-boron composites ion erosion is necessary.When one wishes to examine a specimen with the electron beam perpendicular to the fiber, preparation is as follows: A 1/8 in. disk is cut from the sample with a cylindrical tool by spark machining. Thin slices, 5 mils thick, containing one row of fibers, are then, spark-machined from the disk. After spark machining, the slice is carefully polished with diamond paste until the row of fibers is exposed on each side, as shown in Figure 1.In the case where examination is desired with the electron beam parallel to the fiber, preparation is as follows: Experimental composites are usually 50 mils or less in thickness so an auxiliary holder is necessary during ion milling and for easy transfer to the electron microscope. This holder is pure aluminum sheet, 3 mils thick.


Sign in / Sign up

Export Citation Format

Share Document