Immobilization of Enzymes by Electrochemical and Chemical Oxidative Polymerization of L-DOPA to Fabricate Amperometric Biosensors and Biofuel Cells

2015 ◽  
Vol 7 (20) ◽  
pp. 10843-10852 ◽  
Author(s):  
Mengzhen Dai ◽  
Lingen Sun ◽  
Long Chao ◽  
Yueming Tan ◽  
Yingchun Fu ◽  
...  
Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2442
Author(s):  
Eivydas Andriukonis ◽  
Raimonda Celiesiute-Germaniene ◽  
Simonas Ramanavicius ◽  
Roman Viter ◽  
Arunas Ramanavicius

This review focuses on the overview of microbial amperometric biosensors and microbial biofuel cells (MFC) and shows how very similar principles are applied for the design of both types of these bioelectronics-based devices. Most microorganism-based amperometric biosensors show poor specificity, but this drawback can be exploited in the design of microbial biofuel cells because this enables them to consume wider range of chemical fuels. The efficiency of the charge transfer is among the most challenging and critical issues during the development of any kind of biofuel cell. In most cases, particular redox mediators and nanomaterials are applied for the facilitation of charge transfer from applied biomaterials towards biofuel cell electrodes. Some improvements in charge transfer efficiency can be achieved by the application of conducting polymers (CPs), which can be used for the immobilization of enzymes and in some particular cases even for the facilitation of charge transfer. In this review, charge transfer pathways and mechanisms, which are suitable for the design of biosensors and in biofuel cells, are discussed. Modification methods of the cell-wall/membrane by conducting polymers in order to enhance charge transfer efficiency of microorganisms, which can be potentially applied in the design of microbial biofuel cells, are outlined. The biocompatibility-related aspects of conducting polymers with microorganisms are summarized.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2188
Author(s):  
Yaroslav O. Mezhuev ◽  
Igor Y. Vorobev ◽  
Ivan V. Plyushchii ◽  
Efrem G. Krivoborodov ◽  
Alexander A. Artyukhov ◽  
...  

The kinetic regularities of the initial stage of chemical oxidative polymerization of methylene blue under the action of ammonium peroxodisulfate in an aqueous medium have been established by the method of potentiometry. It was shown that the methylene blue polymerization mechanism includes the stages of chain initiation and growth. It was found that the rate of the initial stage of the reaction obeys the kinetic equation of the first order with the activation energy 49 kJ × mol−1. Based on the proposed mechanism of oxidative polymerization of methylene blue and the data of MALDI, EPR, and IR spectroscopy methods, the structure of the polymethylene blue chain is proposed. It has been shown that polymethylene blue has a metallic luster, and its electrical conductivity is probably the result of conjugation over extended chain sections and the formation of charge transfer complexes. It was found that polymethylene blue is resistant to heating up to a temperature of 440 K and then enters into exothermic transformations without significant weight loss. When the temperature rises above 480 K, polymethylene blue is subject to endothermic degradation and retains 75% of its mass up to 1000 K.


2014 ◽  
Vol 997 ◽  
pp. 368-370
Author(s):  
Ping Zhong ◽  
Lin Xiu Cheng ◽  
Xing Lu

In this paper,ZnO/PANI transparent conductive film has been prepared by in situ chemical oxidative polymerization, APS as an oxidant. The conductivity and transmittance of ZnO/PANI was measured. It has been investigated of the effects of reaction conditions and the doping component on conductivity, transmissivity and adhesion. With the increase of doping ZnO, the conductivity of ZnO/PANI transparent conductive film, transmittance and adhesion reduced. The optimal conditions is that the concentration of An, APS and PVA are 0.75 mol / L, 0.8 mol / L and 0.5wt%, respectively.


Sign in / Sign up

Export Citation Format

Share Document