Proton Conductivity of Proton Exchange Membrane Synergistically Promoted by Different Functionalized Metal–Organic Frameworks

2017 ◽  
Vol 9 (27) ◽  
pp. 22597-22603 ◽  
Author(s):  
Zhuang Rao ◽  
Beibei Tang ◽  
Peiyi Wu
2021 ◽  
Author(s):  
Jie Yang ◽  
Shunlin Zhang ◽  
Zhe Feng ◽  
Ying Cao ◽  
Dunru Zhu

Metal-organic frameworks (MOFs) as proton conductive materials have attracted increasing attention due to their applications in proton-exchange membrane fuel cells. While the majority of the MOFs are based on transition...


2020 ◽  
Vol 49 (47) ◽  
pp. 17130-17139
Author(s):  
Lu Feng ◽  
Hao-Bo Hou ◽  
Hong Zhou

As newly emerging proton-conducting materials, metal–organic frameworks (MOFs) have been attracting wide attention in the field of proton exchange membrane fuel cells.


Author(s):  
guomei wu ◽  
Wen-Jing Li ◽  
Libin Yang ◽  
chenxi zhang

Abstract Proton exchange membrane (PEM) is a key component of proton exchange membrane fuel cells (PEMFCs). In recent years, metal organic framework (MOF) and its composite membranes have become the research hotspots. [Co(L-Glu)(H2O)•H2O]n (Co-MOF, L-Glu = L-glutamate) was synthesized by hydrothermal method. Co2+ ions are coordinated with L-Glu ligands and water molecules to form one-dimensional chains extending along the a-axis, which are further bridged by L-Glu ligands to form a three-dimensional network structure. AC impedance analysis shows that the proton conductivity of Co-MOF reaches 3.14×10-4 S•cm-1 under 98% relative humidity (RH) and 338 K. To improve proton conductivity, different contents of Co-MOF were added in chitosan (CS) to form composite membranes Co-MOF@CS-X (mass fraction X= 5%, 10%, 15% wt). The results show the proton conductivity of the Co-MOF@CS-10 composite membrane is 1.73×10-3 S•cm-1 at 358 K and 98% RH, which is more than 5 times that of Co-MOF. As far as we known, this is the first composite made of amino acid MOFs and CS as proton exchange membrane. Furthermore, Co-MOF has an obvious quenching effect on L-histidine in aqueous solution, which can detect the content of L-histidine in water with high sensitivity, and the detection limit is 1×10-7 M.


CrystEngComm ◽  
2020 ◽  
Vol 22 (39) ◽  
pp. 6425-6443
Author(s):  
Pampa Jhariat ◽  
Priyanka Kumari ◽  
Tamas Panda

Proton conductivity in MOFs and COFs have been attracted due to their applicability as electrolytes in proton exchange membrane fuel cells. A short overview with recent updates on the structural features of MOFs and COFs for proton conduction are presented here.


Sign in / Sign up

Export Citation Format

Share Document