Efficient Planar Structured Perovskite Solar Cells with Enhanced Open-Circuit Voltage and Suppressed Charge Recombination Based on a Slow Grown Perovskite Layer from Lead Acetate Precursor

2017 ◽  
Vol 9 (48) ◽  
pp. 41937-41944 ◽  
Author(s):  
Cong Li ◽  
Qiang Guo ◽  
Zhibin Wang ◽  
Yiming Bai ◽  
Lin Liu ◽  
...  
2021 ◽  
Vol 34 (1) ◽  
pp. 01-08
Author(s):  
B GopalKrishna ◽  
Sanjay Tiwari

Perovskite solar cells are emerging photovoltaic devices with PCE of above 25%. Perovskite are suitable light absorber materials in solar cells with excellent properties like appropriate band gap energy, long carrier lifetime and diffusion length, and high extinction coefficient. Simulation study is an important technique to understand working mechanisms of perovskites solar cells. The study would help develop efficient, stable PSCs experimentally. In this study, modeling of perovskite solar cell was carried out through Setfos software. The optimization of different parameters of layer structure of solar cell would help to achieve maximum light absorption in the perovskite layer of solar cell. Simulation study is based drift-diffusion model to study the different parameters of perovskite solar cell. Hysteresis is one of the factors in the perovskite solar cell which may influence the device performance. The measurement of abnormal hysteresis can be done by current-voltage curve during backward scan during simulation study. In backward scan, the measurement starts from biasing voltage higher than open circuit voltage and sweep to voltage below zero. The numerical simulation used to study the various parameters like open circuit voltage, short circuit current, fill factor, power conversion efficiency and hysteresis. The simulation results would help to understand the photophysics of solar cell physics which would help to fabricate highly efficient and stable perovskite solar cells experimentally.


2019 ◽  
Vol 7 (29) ◽  
pp. 17324-17333 ◽  
Author(s):  
Meiyue Liu ◽  
Ziming Chen ◽  
Yongchao Yang ◽  
Hin-Lap Yip ◽  
Yong Cao

Ag diffused across the PCBM layer increased the trap density and down-shifted the energy level of the perovskite layer. Fortunately, PCBM/ZnO layer efficiently suppressed the Ag diffusion, resulting in a perovskite solar cell with PCE of 18.1%.


2021 ◽  
Vol 9 ◽  
Author(s):  
Hong Zhong ◽  
Renlai Zhou ◽  
Xiaoqing Wu ◽  
Xiaoyun Lin ◽  
Ya Wang ◽  
...  

We report our investigation on the S-shaped current–voltage characteristics in a hot-casting–processed (BA)2 (MA)3Pb4I13 Ruddlesden–Popper (RP) perovskite solar cell. The two-dimensional perovskite solar cells are fabricated with NiOx as the hole transport layer (HTL), which leads to significantly high open-circuit voltage (Voc). The champion device shows a Voc of 1.21 V and a short current density (Jsc) of 17.14 mA/cm2, leading to an overall power conversion efficiency (PCE) of 13.7%. Although the PCE is much higher than the control device fabricated on PEDOT:PSS, a significant S-shaped current–voltage behavior is observed in these NiOx-based devices. It is found that the S-shaped current–voltage behavior is related to the lower dimensional phase distribution and crystallinity at the bottom interface of the RP perovskite layer, and the S-shaped distortion is less severe after the device ageing test.


2018 ◽  
Vol 6 (41) ◽  
pp. 20138-20144 ◽  
Author(s):  
Jaeki Jeong ◽  
Hak-Beom Kim ◽  
Yung Jin Yoon ◽  
Na Gyeong An ◽  
Seyeong Song ◽  
...  

A compact seed perovskite layer (CSPL) with a p–i–n planar heterojunction structure for perovskite solar cells achieved a 19.24% power conversion efficiency with a record open circuit voltage of 1.16 V and 20.37% PCE was achieved with a CSPL assisted n–i–p structure in a pure crystal perovskite film. The CSPL assists vertical growth of the perovskite crystal to enhance device performance.


2021 ◽  
Author(s):  
Ying Hu ◽  
Jiaping Wang ◽  
Peng Zhao ◽  
Zhenhua Lin ◽  
Siyu Zhang ◽  
...  

Abstract Due to excellent thermal stability and optoelectronic properties, all-inorganic perovskite is one of the promising candidates to solve the thermal decomposition problem of conventional organic-inorganic hybrid perovskite solar cells (PSCs), but the larger voltage loss (V loss) cannot be ignored, especially CsPbIBr2, which limits the improvement of efficiency. To reduce the V loss, one promising solution is the modification of the energy level alignment between perovskite layer and adjacent charge transport layer (CTL), which can facilitate charge extraction and reduce carrier recombination rate at perovskite/CTL interface. Therefore, the key issues of minimum V loss and high efficiency of CsPbIBr2-based PSCs were studied in terms of the perovskite layer thickness, the effects of band offset of CTL/perovskite layer, the doping concentration of the CTL, and the electrode work function in this study based on device simulations. The open-circuit voltage (V oc) is increased from 1.37 V to 1.52 V by replacing SnO2 with ZnO as electron transport layer (ETL) due to more matching conduction band with CsPbIBr2 layer.


Author(s):  
Pietro Caprioglio ◽  
Fengshuo Zu ◽  
Christian M. Wolff ◽  
Martin Stolterfhot ◽  
Norbert Koch ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document