Study on CO2 Desorption Behavior of a PDMS–SiO2 Hybrid Membrane Applied in a Novel CO2 Capture Process

2018 ◽  
Vol 10 (34) ◽  
pp. 28992-29002 ◽  
Author(s):  
Ebrahim Ataeivarjovi ◽  
Zhigang Tang ◽  
Jian Chen
2014 ◽  
Vol 63 ◽  
pp. 605-613 ◽  
Author(s):  
Brice Freeman ◽  
Pingjiao Hao ◽  
Richard Baker ◽  
Jay Kniep ◽  
Eric Chen ◽  
...  

2019 ◽  
Author(s):  
Wayuta Srisang ◽  
Teerawat Sanpasertparnich ◽  
Brent Jacobs ◽  
Stavroula Giannaris ◽  
Corwyn Bruce ◽  
...  

2014 ◽  
Vol 61 ◽  
pp. 365-368 ◽  
Author(s):  
Chunfeng Song ◽  
Yasuki Kansha ◽  
Masanori Ishizuka ◽  
Qian Fu ◽  
Atsushi Tsutsumi

2016 ◽  
Vol 43 ◽  
pp. 189-197 ◽  
Author(s):  
Alicja Krzemień ◽  
Angelika Więckol-Ryk ◽  
Adam Smoliński ◽  
Aleksandra Koteras ◽  
Lucyna Więcław-Solny
Keyword(s):  

2021 ◽  
Author(s):  
Joshua Morgan ◽  
Benjamin Omell ◽  
Michael Matuszewski ◽  
David Miller ◽  
Muhammad Ismail Shah ◽  
...  

Author(s):  
Dang Viet Quang ◽  
Dao Van Duong ◽  
Vu Thi Hong Ha ◽  
Dao Sy Duc ◽  
Tran Thi Ngoc Dung ◽  
...  

Amine-mesoporous silica has been considered as a promising CO2 adsorbent with high potential for the reduction of energy consumption and CO2 capture cost; however, its stability could greatly vary with synthetic method. In this study, adsorbents prepared by impregnating different amines including polyethylenimine (PEI) and 3-aminopropyltriethoxysilane (APTES) onto mesoporous silica were used to evaluate the effect of amines selection on the stability of adsorbents used in CO2 capture process. Results revealed that APTES impregnated mesoporous silica (APTES-MPS) is more stable than PEI-impregnated mesoporous silica (PEI-MPS); APTES-MPS was thermally decomposed at ≈280 oC, while PEI-MPS was thermally decomposed at ≈180 oC only. PEI-MPS was particularly less stable when operating under dry condition; its CO2 adsorption capacity reduced by 22.1% after 10 adsorption/regeneration cycles, however, the capacity can be significantly improved in humid condition. APTES-MPS showed a greater stability with no significant reduction in CO2 capture capacity after 10 adsorption/regeneration cycles. In general, APTES-MPS adsorbent possesses a higher stability compared to PEI-MPS thanks to the formation of chemical bonds between amino-functional groups and mesoporous silica substrate. Keywords: Mesoporous silica; CO2 capture; Adsorption; Regeneration; Emission.


2021 ◽  
Author(s):  
Todd Deutsch ◽  
Sarah Baker ◽  
Peter Agbo ◽  
Douglas Kauffman ◽  
James Vickers ◽  
...  

2013 ◽  
Author(s):  
Saeed Danaei Kenarsari ◽  
Yuan Zheng

A lab-scale CO2 capture system is designed, fabricated, and tested for performing CO2 capture via carbonation of very fine calcium oxide (CaO) with particle size in micrometers. This system includes a fixed-bed reactor made of stainless steel (12.7 mm in diameter and 76.2 mm long) packed with calcium oxide particles dispersed in sand particles; heated and maintained at a certain temperature (500–550°C) during each experiment. The pressure along the reactor can be kept constant using a back pressure regulator. The conditions of the tests are relevant to separation of CO2 from combustion/gasification flue gases and in-situ CO2 capture process. The inlet flow, 1% CO2 and 99% N2, goes through the reactor at the flow rate of 150 mL/min (at standard conditions). The CO2 percentage of the outlet gas is monitored and recorded by a portable CO2 analyzer. Using the outlet composition, the conversion of calcium oxide is figured and employed to develop the kinetics model. The results indicate that the rates of carbonation reactions considerably increase with raising the temperature from 500°C to 550°C. The conversion rates of CaO-carbonation are well fitted to a shrinking core model which combines chemical reaction controlled and diffusion controlled models.


2015 ◽  
Vol 39 ◽  
pp. 158-165 ◽  
Author(s):  
Payal Chandan ◽  
Sarah Honchul ◽  
Jesse Thompson ◽  
Kunlei Liu

Sign in / Sign up

Export Citation Format

Share Document