scholarly journals Probing Active-Site Relocation in Cu/SSZ-13 SCR Catalysts during Hydrothermal Aging by In Situ EPR Spectroscopy, Kinetics Studies, and DFT Calculations

ACS Catalysis ◽  
2020 ◽  
Vol 10 (16) ◽  
pp. 9410-9419 ◽  
Author(s):  
Yani Zhang ◽  
Yue Peng ◽  
Junhua Li ◽  
Kyle Groden ◽  
Jean-Sabin McEwen ◽  
...  
2021 ◽  
Author(s):  
Peter J Lindley ◽  
Alison Parkin ◽  
Gideon Davies ◽  
Paul Howard Walton

The active site of the polysaccharide-degrading lytic polysaccharide monooxygenase (LPMO) enzymes features a single copper ion coordinated by a histidine brace. The primary coordnation sphere of the copper contains several...


Author(s):  
Shotaro Tada ◽  
Norifumi Asakuma ◽  
Shiori Ando ◽  
Toru Asaka ◽  
Yusuke Daiko ◽  
...  

This paper reports on the relationship between the H2 chemisorption properties and reversible structural reorientation of the possible active site around Al formed in-situ within polymer-derived ceramics (PDCs) based on...


Author(s):  
Amun Amri ◽  
Ahmad Ainun Najib ◽  
Monita Olivia ◽  
Mohammednoor Altarawneh ◽  
Aman Syam ◽  
...  

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Zhaoyuan Lyu ◽  
Shichao Ding ◽  
Maoyu Wang ◽  
Xiaoqing Pan ◽  
Zhenxing Feng ◽  
...  

AbstractFe-based single-atomic site catalysts (SASCs), with the natural metalloproteases-like active site structure, have attracted widespread attention in biocatalysis and biosensing. Precisely, controlling the isolated single-atom Fe-N-C active site structure is crucial to improve the SASCs’ performance. In this work, we use a facile ion-imprinting method (IIM) to synthesize isolated Fe-N-C single-atomic site catalysts (IIM-Fe-SASC). With this method, the ion-imprinting process can precisely control ion at the atomic level and form numerous well-defined single-atomic Fe-N-C sites. The IIM-Fe-SASC shows better peroxidase-like activities than that of non-imprinted references. Due to its excellent properties, IIM-Fe-SASC is an ideal nanoprobe used in the colorimetric biosensing of hydrogen peroxide (H2O2). Using IIM-Fe-SASC as the nanoprobe, in situ detection of H2O2 generated from MDA-MB-231 cells has been successfully demonstrated with satisfactory sensitivity and specificity. This work opens a novel and easy route in designing advanced SASC and provides a sensitive tool for intracellular H2O2 detection.


2018 ◽  
Vol 116 ◽  
pp. 57-61 ◽  
Author(s):  
Yao Shi ◽  
Pei Zhang ◽  
Tuotuo Fang ◽  
Erhao Gao ◽  
Fujuan Xi ◽  
...  

1999 ◽  
Vol 343 (1) ◽  
pp. 185-190 ◽  
Author(s):  
Laura REQUENA ◽  
Stephen BORNEMANN

Oxalate oxidase (EC 1.2.3.4) catalyses the conversion of oxalate and dioxygen into CO2 and H2O2. The barley (Hordeum vulgare) seedling root enzyme was purified to homogeneity and shown by metal analysis and EPR spectroscopy to contain Mn(II) at up to 0.80 atom per subunit. The involvement of Mn and neither flavin, Cu nor Fe in the direct conversion of dioxygen to H2O2 makes oxalate oxidase unique. A model of the active site of the holoenzyme based on a homology model of the apoenzyme is proposed.


2019 ◽  
Author(s):  
Jifu Duan ◽  
Stefan Mebs ◽  
Moritz Senger ◽  
Konstantin Laun ◽  
Florian Wittkamp ◽  
...  

The H2 conversion and CO inhibition reactivity of nine [FeFe]-hydrogenase constructs with semi-artificial cofactors was studied by in situ and time-resolved infrared spectroscopy, X-ray crystallography, and theoretical methods. Impaired hydrogen turnover and proton transfer as well as characteristic CO inhibition/ reactivation kinetics are assigned to varying degrees of hydrogen-bonding interactions at the active site. We show that the probability to adopt catalytic intermediates is modulated by intramolecular and protein-cofactor interactions that govern structural dynamics at the active site of [FeFe]-hydrogenases.<br>


Sign in / Sign up

Export Citation Format

Share Document