geopolymer composites
Recently Published Documents


TOTAL DOCUMENTS

377
(FIVE YEARS 213)

H-INDEX

33
(FIVE YEARS 11)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 482
Author(s):  
Kinga Korniejenko ◽  
Beata Figiela ◽  
Celina Ziejewska ◽  
Joanna Marczyk ◽  
Patrycja Bazan ◽  
...  

The aim of this article was to analyze the fracture behavior of geopolymer composites based on fly ash or metakaolin with fine aggregate and river sand, with three types of reinforcement: glass, carbon, and aramid fiber, at three different temperatures, approximately: 3 °C, 20 °C, and 50 °C. The temperatures were selected as a future work temperature for composites designed for additive manufacturing technology. The main research method used was bending strength tests in accordance with European standard EN 12390-5. The results showed that the addition of fibers significantly improved the bending strength of all composites. The best results at room temperature were achieved for the metakaolin-based composites and sand reinforced with 2% wt. aramid fiber—17 MPa. The results at 50 °C showed a significant decrease in the bending strength for almost all compositions, which are unexpected results, taking into account the fact that geopolymers are described as materials dedicated to working at high temperatures. The test at low temperature (ca. 3 °C) showed an increase in the bending strength for almost all compositions. The grounds of this type of behavior have not been clearly stated; however, the likely causes of this are discussed.


2022 ◽  
Vol 314 ◽  
pp. 125649
Author(s):  
Ana Carolina Constâncio Trindade ◽  
Marco Liebscher ◽  
Iurie Curosu ◽  
Flávio de Andrade Silva ◽  
Viktor Mechtcherine

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7456
Author(s):  
Ismail Luhar ◽  
Salmabanu Luhar ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
Rafiza Abdul Razak ◽  
Petrica Vizureanu ◽  
...  

There is nothing more fundamental than clean potable water for living beings next to air. On the other hand, wastewater management is cropping up as a challenging task day-by-day due to lots of new additions of novel pollutants as well as the development of infrastructures and regulations that could not maintain its pace with the burgeoning escalation of populace and urbanizations. Therefore, momentous approaches must be sought-after to reclaim fresh water from wastewaters in order to address this great societal challenge. One of the routes is to clean wastewater through treatment processes using diverse adsorbents. However, most of them are unsustainable and quite costly e.g. activated carbon adsorbents, etc. Quite recently, innovative, sustainable, durable, affordable, user and eco-benevolent Geopolymer composites have been brought into play to serve the purpose as a pretty novel subject matter since they can be manufactured by a simple process of Geopolymerization at low temperature, lower energy with mitigated carbon footprints and marvellously, exhibit outstanding properties of physical and chemical stability, ion-exchange, dielectric characteristics, etc., with a porous structure and of course lucrative too because of the incorporation of wastes with them, which is in harmony with the goal to transit from linear to circular economy, i.e., “one’s waste is the treasure for another”. For these reasons, nowadays, this ground-breaking inorganic class of amorphous alumina-silicate materials are drawing the attention of the world researchers for designing them as adsorbents for water and wastewater treatment where the chemical nature and structure of the materials have a great impact on their adsorption competence. The aim of the current most recent state-of-the-art and scientometric review is to comprehend and assess thoroughly the advancements in geo-synthesis, properties and applications of geopolymer composites designed for the elimination of hazardous contaminants viz., heavy metal ions, dyes, etc. The adsorption mechanisms and effects of various environmental conditions on adsorption efficiency are also taken into account for review of the importance of Geopolymers as most recent adsorbents to get rid of the death-defying and toxic pollutants from wastewater with a view to obtaining reclaimed potable and sparkling water for reuse offering to trim down the massive crisis of scarcity of water promoting sustainable water and wastewater treatment for greener environments. The appraisal is made on the performance estimation of Geopolymers for water and wastewater treatment along with the three-dimensional printed components are characterized for mechanical, physical and chemical attributes, permeability and Ammonium (NH4+) ion removal competence of Geopolymer composites as alternative adsorbents for sequestration of an assortment of contaminants during wastewater treatment.


Structures ◽  
2021 ◽  
Vol 34 ◽  
pp. 215-223
Author(s):  
K.T. Vipin ◽  
N. Ganesan ◽  
P.V. Indira

Author(s):  
Jingming Cai ◽  
Jinlong Pan ◽  
Jinsheng Han ◽  
Yuanzheng Lin ◽  
Zhaoliang Sheng

2021 ◽  
Vol 5 (12) ◽  
pp. 312
Author(s):  
Ismail Luhar ◽  
Salmabanu Luhar

The discovery of an innovative class of inorganic polymers has brought forth a revolution in the history of construction technology. Now, no energy-intensive reactions at elevated temperatures are essential, as found in the case of contemporary cement production. In addition to their attributes of low energy and a mitigated carbon footprint, geopolymeric composites can incorporate diversely originated and profound wastes in their manufacturing. As of today, profoundly accessible landfills of rubber tyre waste negatively impact the environment, water, and soil, with many health hazards. Their nonbiodegradable complex chemical structure supports recycling, and toxic gases are emitted by burning them, leading to aesthetic issues. These, altogether, create great concern for well-thought-out disposal methods. One of the achievable solutions is processing this waste into alternative aggregates to thus generate increased economic value whilst reducing primary aggregate consumption through the incorporation of these vast automobile solid wastes in the manufacturing of geopolymer construction composites, e.g., binders, mortar, concrete, etc., produced through the process of geopolymerization as a replacement for natural aggregates, providing relief to the crisis of the degradation of restricted natural aggregate resources. Currently, tyre rubber is one of the most outstanding materials, extensively employed in scores of engineering applications. This manuscript presents a state-of-the-art review of value-added applications in the context of rubberized geopolymer building composites and a review of past investigations. More significantly, this paper reviews rubberized geopolymer composites for their value-added applications.


2021 ◽  
Author(s):  
Ruwa Abufarsakh ◽  
Gabriel Arce ◽  
Marwa Hassan ◽  
Sujata Subedi ◽  
Oscar Huang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document