Dinuclear Cobalt Complex-Catalyzed Stereodivergent Semireduction of Alkynes: Switchable Selectivities Controlled by H2O

ACS Catalysis ◽  
2021 ◽  
pp. 13696-13705
Author(s):  
Ke Chen ◽  
Hongdan Zhu ◽  
Yuling Li ◽  
Qian Peng ◽  
Yinlong Guo ◽  
...  
Keyword(s):  
Author(s):  
Nicolas Lentz ◽  
Alicia Aloisi ◽  
Pierre Thuéry ◽  
Emmanuel Nicolas ◽  
Thibault Cantat

RSC Advances ◽  
2021 ◽  
Vol 11 (28) ◽  
pp. 17108-17115
Author(s):  
Mahnaz Mirheidari ◽  
Javad Safaei-Ghomi

GO@f-SiO2@Co is a heterogenous catalyst composed of spherical silica particles grafted on the surface of graphene oxide with ethylenediamine ligands and coordination with Co(ii). We assessed the activity of the catalyst for the synthesis of aminonaphthoquinones.


Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1667
Author(s):  
Mikhail Karushev

Fast and reversible cobalt-centered redox reactions in metallopolymers are the key to using these materials in energy storage, electrocatalytic, and sensing applications. Metal-centered electrochemical activity can be enhanced via redox matching of the conjugated organic backbone and cobalt centers. In this study, we present a novel approach to redox matching via modification of the cobalt coordination site: a conductive electrochemically active polymer was electro-synthesized from [Co(Amben)] complex (Amben = N,N′-bis(o-aminobenzylidene)ethylenediamine) for the first time. The poly-[Co(Amben)] films were investigated by cyclic voltammetry, electrochemical quartz crystal microbalance (EQCM), in situ UV‑vis-NIR spectroelectrochemistry, and in situ conductance measurements between −0.9 and 1.3 V vs. Ag/Ag+. The polymer displayed multistep redox processes involving reversible transfer of the total of 1.25 electrons per repeat unit. The findings indicate consecutive formation of three redox states during reversible electrochemical oxidation of the polymer film, which were identified as benzidine radical cations, Co(III) ions, and benzidine di-cations. The Co(II)/Co(III) redox switching is retained in the thick polymer films because it occurs at potentials of high polymer conductivity due to the optimum redox matching of the Co(II)/Co(III) redox pair with the organic conjugated backbone. It makes poly-[Co(Amben)] suitable for various practical applications based on cobalt-mediated redox reactions.


Author(s):  
Yu Liu ◽  
Jiayun Li ◽  
Ying Bai ◽  
Jiajian Peng
Keyword(s):  

2005 ◽  
Vol 04 (04) ◽  
pp. 591-598
Author(s):  
LIHONG LIU

In this paper, we report a simple solid-state method for fabricating cobalt-oxide–carbon core-shell nanostructures. With this technique, various forms of nanocarbons such as nanotubes, polyhedrons and onions can be generated via pyrolyzing cobalt–complex xerogels at 150 ~ 340°C. The thus-formed nanocarbons can be protected by cobalt-oxide matrix up to 1000°C in air atmosphere. Cobalt-oxide shelled or unshelled nanocarbons can be controlled by choosing a suitable complexing agent for the xerogel precursors. In particular, glycine has been proven to be a good complexing agent for low-temperature formation of unshelled nanocarbons and high-temperature generation of shelled nanocarbons.


Sign in / Sign up

Export Citation Format

Share Document