Identification of Intrinsic Active Sites for the Selective Catalytic Reduction of Nitric Oxide on Metal-Free Carbon Catalysts via Selective Passivation

ACS Catalysis ◽  
2022 ◽  
pp. 1024-1030
Author(s):  
Jin Yuan ◽  
JinXing Mi ◽  
Rongqiang Yin ◽  
Tao Yan ◽  
Hao Liu ◽  
...  
1970 ◽  
Vol 4 (1) ◽  
Author(s):  
Ismail Mohd Saaid ◽  
Abdul Rahman Mohamed and Subhash Bhatia

Kinetics for the selective catalytic reduction (SCR) of nitric oxide (NO) using i-C4H10 as the reducing agent over Pt-Cu-ZSM5 has been investigated in the temperature range of 200 ?C – 450 oC. Langmuir-Hinshelwood-Hougen-Watson model was proposed for kinetics of the reaction and reaction parameters were evaluated.  The heat of adsorption of NO was found to be considerably high, attributed to strong covalent bond between NO gas molecules and metal active sites.  Using reaction parameters obtained from the experiment, the heterogeneous model could form a good correlation between experimental and simulated values of NO reduction. Key Words: Reaction kinetics, Selective catalytic reduction, NO reduction, Bimetallic catalyst, H-ZSM-5 zeolite.


Catalysts ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1426
Author(s):  
Marwa Saad ◽  
Agnieszka Szymaszek ◽  
Anna Białas ◽  
Bogdan Samojeden ◽  
Monika Motak

A series of materials based on activated carbon (AC) with copper deposited in various amounts were prepared using an incipient wetness impregnation method and tested as catalysts for selective catalytic reduction of nitrogen oxides with ammonia. The samples were poisoned with SO2 and regenerated in order to analyze their susceptibility to deactivation by the harmful component of exhaust gas. NO conversion over the fresh catalyst doped with 10 wt.% of Cu reached 81% of NO conversion at 140 °C and about 90% in the temperature range of 260–300 °C. The rate of poisoning with SO2 was dependent on Cu loading, but in general, it lowered NO conversion due to the formation of (NH4)2SO4 deposits that blocked the active sites of the catalysts. After regeneration, the catalytic activity of the materials was restored and NO conversion exceeded 70% for all of the samples.


2020 ◽  
Vol 7 (21) ◽  
pp. 3515-3520
Author(s):  
Wubing Yao ◽  
Jiali Wang ◽  
Aiguo Zhong ◽  
Shiliang Wang ◽  
Yinlin Shao

The selective catalytic reduction of amides to value-added amine products is a desirable but challenging transformation.


Fuel ◽  
2021 ◽  
Vol 304 ◽  
pp. 121445
Author(s):  
Running Kang ◽  
Junyao He ◽  
Feng Bin ◽  
Baojuan Dou ◽  
Qinglan Hao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document