scholarly journals A Reflection on Juneteenth and the Diversity of Our Chemical Neuroscience Community

Author(s):  
Jacob M. Hooker
2021 ◽  
Vol 10 ◽  
pp. 104-108
Author(s):  
Ana Silva ◽  
Cecilia Tomassini ◽  
Julieta Zurbrigg ◽  
Adrián G. Palacios ◽  
Verónica Amarante ◽  
...  

Author(s):  
Markus Heilig ◽  
James MacKillop ◽  
Diana Martinez ◽  
Jürgen Rehm ◽  
Lorenzo Leggio ◽  
...  

AbstractThe view that substance addiction is a brain disease, although widely accepted in the neuroscience community, has become subject to acerbic criticism in recent years. These criticisms state that the brain disease view is deterministic, fails to account for heterogeneity in remission and recovery, places too much emphasis on a compulsive dimension of addiction, and that a specific neural signature of addiction has not been identified. We acknowledge that some of these criticisms have merit, but assert that the foundational premise that addiction has a neurobiological basis is fundamentally sound. We also emphasize that denying that addiction is a brain disease is a harmful standpoint since it contributes to reducing access to healthcare and treatment, the consequences of which are catastrophic. Here, we therefore address these criticisms, and in doing so provide a contemporary update of the brain disease view of addiction. We provide arguments to support this view, discuss why apparently spontaneous remission does not negate it, and how seemingly compulsive behaviors can co-exist with the sensitivity to alternative reinforcement in addiction. Most importantly, we argue that the brain is the biological substrate from which both addiction and the capacity for behavior change arise, arguing for an intensified neuroscientific study of recovery. More broadly, we propose that these disagreements reveal the need for multidisciplinary research that integrates neuroscientific, behavioral, clinical, and sociocultural perspectives.


2020 ◽  
Vol 11 ◽  
Author(s):  
Andrew McWilliams ◽  
Stephen M. Fleming ◽  
Anthony S. David ◽  
Gareth Owen

The 2005 Mental Capacity Act of England and Wales provides a description in statute law of a test determining if a person lacks “mental capacity” to take a particular decision and describes how the “best interests” of such a person should be determined. The Act established a new Court of Protection (CoP) to hear cases related to the Act and to rule on disputes over mental capacity. The court gathers a range of evidence, including reports from clinicians and experts. Human rights organisations and others have raised concerns about the nature of assessments for incapacity, including the role of brain investigations and psychometric tests.Aim: Describe use and interpretation of structured measures of psychological and brain function in CoP cases, to facilitate standardisation and improvement of practices, both in the courtroom and in non-legal settings.Method: Quantitative review of case law using all CoP judgments published until 2019. The judgments (n = 408) were read to generate a subset referring to structured testing (n = 50). These were then examined in detail to extract the nature of the measurements, circumstances of their use and features of interpretation by the court.Results: The 408 judgments contained 146 references to structured measurement of psychological or brain function, spread over 50 cases. 120/146 (82.2%) referred to “impairment of mind or brain,” with this being part of assessment for incapacity in 58/146 (39.7%). Measurement referred on 25/146 (17.1%) occasions to “functional decision-making abilities.” Structured measures were used most commonly by psychiatrists and psychologists. Psychological measurements comprised 66.4% of measures. Neuroimaging and electrophysiology were presented for diagnostic purposes only. A small number of behavioural measures were used for people with disorders of consciousness. When assessing incapacity, IQ and the Mini-Mental-State Examination were the commonest measures. A standardised measure of mental capacity itself was employed just once. Judges rarely integrated measurements in their capacity determinations.Conclusion: Structured testing of brain and psychological function is used in limited ways in the Court of Protection. Whilst there are challenges in creating measures of capacity, we highlight an opportunity for the neuroscience community to improve objectivity in assessment, inside and outside the courtroom.


2021 ◽  
Author(s):  
Mohsen Hadianpour ◽  
Ehsan Rezayat ◽  
Mohammad-Reza Dehaqani

Abstract Due to the significantly drastic progress and improvement in neurophysiological recording technologies, neuroscientists have faced various complexities dealing with unstructured large-scale neural data. In the neuroscience community, these complexities could create serious bottlenecks in storing, sharing, and processing neural datasets. In this article, we developed a distributed high-performance computing (HPC) framework called `Big neuronal data framework' (BNDF), to overcome these complexities. BNDF is based on open-source big data frameworks, Hadoop and Spark providing a flexible and scalable structure. We examined BNDF on three different large-scale electrophysiological recording datasets from nonhuman primate’s brains. Our results exhibited faster runtimes with scalability due to the distributed nature of BNDF. We compared BNDF results to a widely used platform like MATLAB in an equitable computational resource. Compared with other similar methods, using BNDF provides more than five times faster performance in spike sorting as a usual neuroscience application.


2020 ◽  
Author(s):  
A. E. Sullivan ◽  
S. J. Tappan ◽  
P. J. Angstman ◽  
A. Rodriguez ◽  
G. C. Thomas ◽  
...  

AbstractWith advances in microscopy and computer science, the technique of digitally reconstructing, modeling, and quantifying microscopic anatomies has become central to many fields of biological research. MBF Bioscience has chosen to openly document their digital reconstruction file format, Neuromorphological File Specification (4.0), available at www.mbfbioscience.com/filespecification (Angstman et al. 2020). One of such technologies, the format created and maintained by MBF Bioscience is broadly utilized by the neuroscience community. The data format’s structure and capabilities have evolved since its inception, with modifications made to keep pace with advancements in microscopy and the scientific questions raised by worldwide experts in the field. More recent modifications to the neuromorphological data format ensure it abides by the Findable, Accessible, Interoperable, and Reusable (FAIR) data standards promoted by the International Neuroinformatics Coordinating Facility (INCF; Wilkinson et al. 2016). The incorporated metadata make it easy to identify and repurpose these data types for downstream application and investigation. This publication describes key elements of the file format and details their relevant structural advantages in an effort to encourage the reuse of these rich data files for alternative analysis or reproduction of derived conclusions.


Author(s):  
Lawrence A. Zeidman

Despite knowledge since the postwar period and the efforts of neurologist Leo Alexander, the neuroscience community has been slow to recognize its involvement in the racial hygiene policies of the Third Reich. Part of this has been denial, but part of it protective of past perpetrators. However, since the popularization of medicine in the Nazi era in the 1980s, the fall of the Berlin Wall making previously unavailable patient data in the 1990s, and some astute articles in the neurology literature, neuroscience in the Nazi era has emerged as a scientific topic. Pioneering works by Shevell and Peiffer highlighted the unethical involvement of even famed German neuroscientists such as Julius Hallervorden. In the 2000s a growing body of literature has begun to show common threads between the exile of persecuted neuroscientists and the rise of increasingly destructive policies toward neurologic patients, and the exploitation of these patients for scientific research.


GigaScience ◽  
2016 ◽  
Vol 5 (1) ◽  
Author(s):  
R. Cameron Craddock ◽  
Daniel S. Margulies ◽  
Pierre Bellec ◽  
B. Nolan Nichols ◽  
Sarael Alcauter ◽  
...  

2020 ◽  
Vol 139 ◽  
pp. 344-354 ◽  
Author(s):  
Cassidy Werner ◽  
Tyler Scullen ◽  
Mansour Mathkour ◽  
Tyler Zeoli ◽  
Adam Beighley ◽  
...  

1998 ◽  
Vol 10 (2) ◽  
pp. 353-371 ◽  
Author(s):  
Paul Mineiro ◽  
David Zipser

The relative contributions of feedforward and recurrent connectivity to the direction-selective responses of cells in layer IVB of primary visual cortex are currently the subject of debate in the neuroscience community. Recently, biophysically detailed simulations have shown that realistic direction-selective responses can be achieved via recurrent cortical interactions between cells with nondirection-selective feedforward input (Suarez et al., 1995; Maex & Orban, 1996). Unfortunately these models, while desirable for detailed comparison with biology, are complex and thus difficult to analyze mathematically. In this article, a relatively simple cortical dynamical model is used to analyze the emergence of direction-selective responses via recurrent interactions. A comparison between a model based on our analysis and physiological data is presented. The approach also allows analysis of the recurrently propagated signal, revealing the predictive nature of the implementation.


Sign in / Sign up

Export Citation Format

Share Document